We are asked to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx $$

AnalysisDefinite IntegralIntegrationCalculusExponential Functions
2025/4/12

1. Problem Description

We are asked to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx

2. Solution Steps

Let's rewrite the integrand:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
Now we rewrite the fractions further:
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Similarly,
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Therefore, we have
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \left( \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{1+e^{ax} - (1+e^{bx})}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})}
Instead, we use the following decomposition:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{1+e^{ax}} \frac{1}{1+e^{bx}} - \frac{1+e^{bx}-1}{1+e^{bx}} \frac{1}{1+e^{ax}} = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
Thus,
\frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{e^{-bx}}{e^{-bx}+1} - \frac{e^{-ax}}{e^{-ax}+1}
\int_0^{\infty} \frac{1}{1+e^{bx}} dx - \int_0^{\infty} \frac{1}{1+e^{ax}} dx
\int_0^{\infty} \frac{e^{-bx}}{1+e^{-bx}}dx - \int_0^{\infty} \frac{e^{-ax}}{1+e^{-ax}}dx
Now, ecx1+ecxdx=1cln(1+ecx)\int \frac{e^{-cx}}{1+e^{-cx}} dx = -\frac{1}{c} \ln(1+e^{-cx})
-\frac{1}{b} \ln(1+e^{-bx}) \Big|_0^{\infty} - \left( -\frac{1}{a} \ln(1+e^{-ax}) \Big|_0^{\infty} \right)
-\frac{1}{b} [\ln(1+0) - \ln(1+1)] + \frac{1}{a} [\ln(1+0) - \ln(1+1)]
-\frac{1}{b} (0 - \ln 2) + \frac{1}{a} (0 - \ln 2) = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \ln 2 \left(\frac{1}{b} - \frac{1}{a} \right) = \ln 2 \left(\frac{a-b}{ab}\right)

3. Final Answer

\ln 2 \left(\frac{a-b}{ab}\right)

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29