We are asked to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx $$
2025/4/12
1. Problem Description
We are asked to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx
2. Solution Steps
Let's rewrite the integrand:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
Now we rewrite the fractions further:
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Similarly,
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Therefore, we have
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \left( \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{1+e^{ax} - (1+e^{bx})}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})}
Instead, we use the following decomposition:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{1+e^{ax}} \frac{1}{1+e^{bx}} - \frac{1+e^{bx}-1}{1+e^{bx}} \frac{1}{1+e^{ax}} = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
Thus,
\frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{e^{-bx}}{e^{-bx}+1} - \frac{e^{-ax}}{e^{-ax}+1}
\int_0^{\infty} \frac{1}{1+e^{bx}} dx - \int_0^{\infty} \frac{1}{1+e^{ax}} dx
\int_0^{\infty} \frac{e^{-bx}}{1+e^{-bx}}dx - \int_0^{\infty} \frac{e^{-ax}}{1+e^{-ax}}dx
Now,
-\frac{1}{b} \ln(1+e^{-bx}) \Big|_0^{\infty} - \left( -\frac{1}{a} \ln(1+e^{-ax}) \Big|_0^{\infty} \right)
-\frac{1}{b} [\ln(1+0) - \ln(1+1)] + \frac{1}{a} [\ln(1+0) - \ln(1+1)]
-\frac{1}{b} (0 - \ln 2) + \frac{1}{a} (0 - \ln 2) = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \ln 2 \left(\frac{1}{b} - \frac{1}{a} \right) = \ln 2 \left(\frac{a-b}{ab}\right)
3. Final Answer
\ln 2 \left(\frac{a-b}{ab}\right)