We are asked to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx $$

AnalysisDefinite IntegralIntegrationCalculusExponential Functions
2025/4/12

1. Problem Description

We are asked to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx

2. Solution Steps

Let's rewrite the integrand:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
Now we rewrite the fractions further:
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Similarly,
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Therefore, we have
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \left( \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{1+e^{ax} - (1+e^{bx})}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})}
Instead, we use the following decomposition:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{1+e^{ax}} \frac{1}{1+e^{bx}} - \frac{1+e^{bx}-1}{1+e^{bx}} \frac{1}{1+e^{ax}} = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
Thus,
\frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} = \frac{e^{-bx}}{e^{-bx}+1} - \frac{e^{-ax}}{e^{-ax}+1}
\int_0^{\infty} \frac{1}{1+e^{bx}} dx - \int_0^{\infty} \frac{1}{1+e^{ax}} dx
\int_0^{\infty} \frac{e^{-bx}}{1+e^{-bx}}dx - \int_0^{\infty} \frac{e^{-ax}}{1+e^{-ax}}dx
Now, ecx1+ecxdx=1cln(1+ecx)\int \frac{e^{-cx}}{1+e^{-cx}} dx = -\frac{1}{c} \ln(1+e^{-cx})
-\frac{1}{b} \ln(1+e^{-bx}) \Big|_0^{\infty} - \left( -\frac{1}{a} \ln(1+e^{-ax}) \Big|_0^{\infty} \right)
-\frac{1}{b} [\ln(1+0) - \ln(1+1)] + \frac{1}{a} [\ln(1+0) - \ln(1+1)]
-\frac{1}{b} (0 - \ln 2) + \frac{1}{a} (0 - \ln 2) = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \ln 2 \left(\frac{1}{b} - \frac{1}{a} \right) = \ln 2 \left(\frac{a-b}{ab}\right)

3. Final Answer

\ln 2 \left(\frac{a-b}{ab}\right)

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13