We need to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx $$

AnalysisDefinite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/12

1. Problem Description

We need to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx

2. Solution Steps

Let
I = \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx
We can rewrite the integrand as follows:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
We can rewrite the first term as
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
And rewrite the second term as
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Thus,
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
So the integral becomes
I = \int_{0}^{+\infty} \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx
Now, we can split the integral into two:
I = \int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx - \int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx
Let u=bxu = bx, so x=u/bx = u/b and dx=1bdudx = \frac{1}{b} du. When x=0x=0, u=0u=0. When xx \to \infty, uu \to \infty.
\int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{u}} \frac{1}{b} \, du = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du
Similarly, let v=axv = ax, so x=v/ax = v/a and dx=1advdx = \frac{1}{a} dv. When x=0x=0, v=0v=0. When xx \to \infty, vv \to \infty.
\int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{v}} \frac{1}{a} \, dv = \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv
Therefore,
I = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du - \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv = \left( \frac{1}{b} - \frac{1}{a} \right) \int_{0}^{+\infty} \frac{1}{1+e^{x}} \, dx
Now we need to evaluate 0+11+exdx\int_{0}^{+\infty} \frac{1}{1+e^{x}} \, dx. We can rewrite this as
\int_{0}^{+\infty} \frac{e^{-x}}{e^{-x}+1} \, dx = \left[-\ln(1+e^{-x})\right]_{0}^{+\infty} = -\ln(1+0) + \ln(1+1) = \ln 2
Thus,
I = \left(\frac{1}{b} - \frac{1}{a}\right) \ln 2 = \left(\frac{a-b}{ab}\right) \ln 2
Then
I = \int_0^\infty \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx = \int_0^\infty \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \frac{(a-b) \ln 2}{ab}

3. Final Answer

(ab)ln2ab\frac{(a-b)\ln 2}{ab}

Related problems in "Analysis"

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1