We need to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx $$
2025/4/12
1. Problem Description
We need to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx
2. Solution Steps
Let
I = \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx
We can rewrite the integrand as follows:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
We can rewrite the first term as
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
And rewrite the second term as
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Thus,
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
So the integral becomes
I = \int_{0}^{+\infty} \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx
Now, we can split the integral into two:
I = \int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx - \int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx
Let , so and . When , . When , .
\int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{u}} \frac{1}{b} \, du = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du
Similarly, let , so and . When , . When , .
\int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{v}} \frac{1}{a} \, dv = \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv
Therefore,
I = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du - \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv = \left( \frac{1}{b} - \frac{1}{a} \right) \int_{0}^{+\infty} \frac{1}{1+e^{x}} \, dx
Now we need to evaluate . We can rewrite this as
\int_{0}^{+\infty} \frac{e^{-x}}{e^{-x}+1} \, dx = \left[-\ln(1+e^{-x})\right]_{0}^{+\infty} = -\ln(1+0) + \ln(1+1) = \ln 2
Thus,
I = \left(\frac{1}{b} - \frac{1}{a}\right) \ln 2 = \left(\frac{a-b}{ab}\right) \ln 2
Then
I = \int_0^\infty \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx = \int_0^\infty \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \frac{(a-b) \ln 2}{ab}