We need to evaluate the definite integral $$ \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx $$

AnalysisDefinite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/12

1. Problem Description

We need to evaluate the definite integral
\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx

2. Solution Steps

Let
I = \int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} \, dx
We can rewrite the integrand as follows:
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} - \frac{e^{bx}}{(1+e^{ax})(1+e^{bx})}
We can rewrite the first term as
\frac{e^{ax}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{ax}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
And rewrite the second term as
\frac{e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1+e^{bx}-1}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})}
Thus,
\frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{1}{1+e^{bx}} - \frac{1}{(1+e^{ax})(1+e^{bx})} - \left( \frac{1}{1+e^{ax}} - \frac{1}{(1+e^{ax})(1+e^{bx})} \right) = \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}}
So the integral becomes
I = \int_{0}^{+\infty} \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx
Now, we can split the integral into two:
I = \int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx - \int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx
Let u=bxu = bx, so x=u/bx = u/b and dx=1bdudx = \frac{1}{b} du. When x=0x=0, u=0u=0. When xx \to \infty, uu \to \infty.
\int_{0}^{+\infty} \frac{1}{1+e^{bx}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{u}} \frac{1}{b} \, du = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du
Similarly, let v=axv = ax, so x=v/ax = v/a and dx=1advdx = \frac{1}{a} dv. When x=0x=0, v=0v=0. When xx \to \infty, vv \to \infty.
\int_{0}^{+\infty} \frac{1}{1+e^{ax}} \, dx = \int_{0}^{+\infty} \frac{1}{1+e^{v}} \frac{1}{a} \, dv = \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv
Therefore,
I = \frac{1}{b} \int_{0}^{+\infty} \frac{1}{1+e^{u}} \, du - \frac{1}{a} \int_{0}^{+\infty} \frac{1}{1+e^{v}} \, dv = \left( \frac{1}{b} - \frac{1}{a} \right) \int_{0}^{+\infty} \frac{1}{1+e^{x}} \, dx
Now we need to evaluate 0+11+exdx\int_{0}^{+\infty} \frac{1}{1+e^{x}} \, dx. We can rewrite this as
\int_{0}^{+\infty} \frac{e^{-x}}{e^{-x}+1} \, dx = \left[-\ln(1+e^{-x})\right]_{0}^{+\infty} = -\ln(1+0) + \ln(1+1) = \ln 2
Thus,
I = \left(\frac{1}{b} - \frac{1}{a}\right) \ln 2 = \left(\frac{a-b}{ab}\right) \ln 2
Then
I = \int_0^\infty \frac{e^{ax} - e^{bx}}{(1+e^{ax})(1+e^{bx})} dx = \int_0^\infty \left( \frac{1}{1+e^{bx}} - \frac{1}{1+e^{ax}} \right) dx = \frac{\ln 2}{b} - \frac{\ln 2}{a} = \frac{(a-b) \ln 2}{ab}

3. Final Answer

(ab)ln2ab\frac{(a-b)\ln 2}{ab}

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13