We need to evaluate the definite integral $I = \int_{0}^{2} (x + 1 + \frac{3}{x+1}) dx$.

AnalysisDefinite IntegralIntegrationAntiderivativeCalculus
2025/3/14

1. Problem Description

We need to evaluate the definite integral I=02(x+1+3x+1)dxI = \int_{0}^{2} (x + 1 + \frac{3}{x+1}) dx.

2. Solution Steps

First, we find the antiderivative of the integrand.
The antiderivative of xx is x22\frac{x^2}{2}.
The antiderivative of 11 is xx.
The antiderivative of 3x+1\frac{3}{x+1} is 3lnx+13\ln|x+1|.
Therefore, the antiderivative of x+1+3x+1x + 1 + \frac{3}{x+1} is x22+x+3lnx+1\frac{x^2}{2} + x + 3\ln|x+1|.
Next, we evaluate the definite integral by plugging in the limits of integration.
I=[x22+x+3lnx+1]02=(222+2+3ln2+1)(022+0+3ln0+1)I = \left[\frac{x^2}{2} + x + 3\ln|x+1|\right]_{0}^{2} = \left(\frac{2^2}{2} + 2 + 3\ln|2+1|\right) - \left(\frac{0^2}{2} + 0 + 3\ln|0+1|\right)
I=(42+2+3ln(3))(0+0+3ln(1))I = \left(\frac{4}{2} + 2 + 3\ln(3)\right) - \left(0 + 0 + 3\ln(1)\right)
I=(2+2+3ln(3))(0)I = (2 + 2 + 3\ln(3)) - (0)
Since ln(1)=0\ln(1) = 0.
I=4+3ln(3)I = 4 + 3\ln(3)

3. Final Answer

4+3ln(3)4 + 3\ln(3)

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1