We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) $

AnalysisLimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

1. Problem Description

We are asked to evaluate the limits:
(1) limx0(1xsinx) \lim_{x \to 0} (\frac{1}{x} \cdot \sin x)
(2) limx0(1tanx1x) \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x})

2. Solution Steps

(1) For the first limit, we have:
limx0(1xsinx)=limx0sinxx \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) = \lim_{x \to 0} \frac{\sin x}{x}
We know that limx0sinxx=1 \lim_{x \to 0} \frac{\sin x}{x} = 1
(2) For the second limit, we have:
limx0(1tanx1x)=limx0(xtanxxtanx) \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) = \lim_{x \to 0} (\frac{x - \tan x}{x \tan x})
Since limx0(xtanx)=0 \lim_{x \to 0} (x - \tan x) = 0 and limx0xtanx=0 \lim_{x \to 0} x \tan x = 0 , we can use L'Hopital's rule.
ddx(xtanx)=1sec2x=11cos2x=cos2x1cos2x=sin2xcos2x=tan2x \frac{d}{dx} (x - \tan x) = 1 - \sec^2 x = 1 - \frac{1}{\cos^2 x} = \frac{\cos^2 x - 1}{\cos^2 x} = \frac{-\sin^2 x}{\cos^2 x} = -\tan^2 x
ddx(xtanx)=tanx+xsec2x \frac{d}{dx} (x \tan x) = \tan x + x \sec^2 x
Therefore,
limx0xtanxxtanx=limx0tan2xtanx+xsec2x=limx0tan2xtanx+xsec2x \lim_{x \to 0} \frac{x - \tan x}{x \tan x} = \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x} = \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x}
Since limx0tan2x=0 \lim_{x \to 0} -\tan^2 x = 0 and limx0tanx+xsec2x=0 \lim_{x \to 0} \tan x + x \sec^2 x = 0 , we can apply L'Hopital's rule again.
ddx(tan2x)=2tanxsec2x \frac{d}{dx} (-\tan^2 x) = -2 \tan x \sec^2 x
ddx(tanx+xsec2x)=sec2x+sec2x+x(2secx)(secxtanx)=2sec2x+2xsec2xtanx \frac{d}{dx} (\tan x + x \sec^2 x) = \sec^2 x + \sec^2 x + x (2 \sec x) (\sec x \tan x) = 2 \sec^2 x + 2x \sec^2 x \tan x
So,
limx0tan2xtanx+xsec2x=limx02tanxsec2x2sec2x+2xsec2xtanx=limx0tanxsec2xsec2x+xsec2xtanx=limx0tanx1+xtanx \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x} = \lim_{x \to 0} \frac{-2 \tan x \sec^2 x}{2 \sec^2 x + 2x \sec^2 x \tan x} = \lim_{x \to 0} \frac{- \tan x \sec^2 x}{ \sec^2 x + x \sec^2 x \tan x} = \lim_{x \to 0} \frac{- \tan x}{1 + x \tan x}
Since limx0tanx=0 \lim_{x \to 0} - \tan x = 0 and limx01+xtanx=1 \lim_{x \to 0} 1 + x \tan x = 1 , we have:
limx0tanx1+xtanx=01=0 \lim_{x \to 0} \frac{- \tan x}{1 + x \tan x} = \frac{0}{1} = 0
Alternatively, we can use Taylor series expansions:
tanx=x+x33+2x515+...\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + ...
So,
1tanx1x=xtanxxtanx=x(x+x33+2x515+...)x(x+x33+2x515+...)=x332x515...x2+x43+2x615+...=x3(132x215...)x2(1+x23+2x415+...)=x132x215...1+x23+2x415+...\frac{1}{\tan x} - \frac{1}{x} = \frac{x - \tan x}{x \tan x} = \frac{x - (x + \frac{x^3}{3} + \frac{2x^5}{15} + ...)}{x(x + \frac{x^3}{3} + \frac{2x^5}{15} + ...)} = \frac{-\frac{x^3}{3} - \frac{2x^5}{15} - ...}{x^2 + \frac{x^4}{3} + \frac{2x^6}{15} + ...} = \frac{x^3(-\frac{1}{3} - \frac{2x^2}{15} - ...)}{x^2(1 + \frac{x^2}{3} + \frac{2x^4}{15} + ...)} = x \frac{-\frac{1}{3} - \frac{2x^2}{15} - ...}{1 + \frac{x^2}{3} + \frac{2x^4}{15} + ...}
As x0x \to 0, this approaches 0(13)=00 \cdot (-\frac{1}{3}) = 0.

3. Final Answer

(1) The limit of limx0(1xsinx) \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) is

1. (2) The limit of $ \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) $ is

0.

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13

The problem states: If $(x+1)f'(x) = f(x) + \frac{1}{x}$, then $f'(\frac{1}{2}) = ?$

Differential EquationsIntegrationPartial Fraction DecompositionCalculus
2025/4/13