We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) $

AnalysisLimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

1. Problem Description

We are asked to evaluate the limits:
(1) limx0(1xsinx) \lim_{x \to 0} (\frac{1}{x} \cdot \sin x)
(2) limx0(1tanx1x) \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x})

2. Solution Steps

(1) For the first limit, we have:
limx0(1xsinx)=limx0sinxx \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) = \lim_{x \to 0} \frac{\sin x}{x}
We know that limx0sinxx=1 \lim_{x \to 0} \frac{\sin x}{x} = 1
(2) For the second limit, we have:
limx0(1tanx1x)=limx0(xtanxxtanx) \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) = \lim_{x \to 0} (\frac{x - \tan x}{x \tan x})
Since limx0(xtanx)=0 \lim_{x \to 0} (x - \tan x) = 0 and limx0xtanx=0 \lim_{x \to 0} x \tan x = 0 , we can use L'Hopital's rule.
ddx(xtanx)=1sec2x=11cos2x=cos2x1cos2x=sin2xcos2x=tan2x \frac{d}{dx} (x - \tan x) = 1 - \sec^2 x = 1 - \frac{1}{\cos^2 x} = \frac{\cos^2 x - 1}{\cos^2 x} = \frac{-\sin^2 x}{\cos^2 x} = -\tan^2 x
ddx(xtanx)=tanx+xsec2x \frac{d}{dx} (x \tan x) = \tan x + x \sec^2 x
Therefore,
limx0xtanxxtanx=limx0tan2xtanx+xsec2x=limx0tan2xtanx+xsec2x \lim_{x \to 0} \frac{x - \tan x}{x \tan x} = \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x} = \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x}
Since limx0tan2x=0 \lim_{x \to 0} -\tan^2 x = 0 and limx0tanx+xsec2x=0 \lim_{x \to 0} \tan x + x \sec^2 x = 0 , we can apply L'Hopital's rule again.
ddx(tan2x)=2tanxsec2x \frac{d}{dx} (-\tan^2 x) = -2 \tan x \sec^2 x
ddx(tanx+xsec2x)=sec2x+sec2x+x(2secx)(secxtanx)=2sec2x+2xsec2xtanx \frac{d}{dx} (\tan x + x \sec^2 x) = \sec^2 x + \sec^2 x + x (2 \sec x) (\sec x \tan x) = 2 \sec^2 x + 2x \sec^2 x \tan x
So,
limx0tan2xtanx+xsec2x=limx02tanxsec2x2sec2x+2xsec2xtanx=limx0tanxsec2xsec2x+xsec2xtanx=limx0tanx1+xtanx \lim_{x \to 0} \frac{-\tan^2 x}{\tan x + x \sec^2 x} = \lim_{x \to 0} \frac{-2 \tan x \sec^2 x}{2 \sec^2 x + 2x \sec^2 x \tan x} = \lim_{x \to 0} \frac{- \tan x \sec^2 x}{ \sec^2 x + x \sec^2 x \tan x} = \lim_{x \to 0} \frac{- \tan x}{1 + x \tan x}
Since limx0tanx=0 \lim_{x \to 0} - \tan x = 0 and limx01+xtanx=1 \lim_{x \to 0} 1 + x \tan x = 1 , we have:
limx0tanx1+xtanx=01=0 \lim_{x \to 0} \frac{- \tan x}{1 + x \tan x} = \frac{0}{1} = 0
Alternatively, we can use Taylor series expansions:
tanx=x+x33+2x515+...\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + ...
So,
1tanx1x=xtanxxtanx=x(x+x33+2x515+...)x(x+x33+2x515+...)=x332x515...x2+x43+2x615+...=x3(132x215...)x2(1+x23+2x415+...)=x132x215...1+x23+2x415+...\frac{1}{\tan x} - \frac{1}{x} = \frac{x - \tan x}{x \tan x} = \frac{x - (x + \frac{x^3}{3} + \frac{2x^5}{15} + ...)}{x(x + \frac{x^3}{3} + \frac{2x^5}{15} + ...)} = \frac{-\frac{x^3}{3} - \frac{2x^5}{15} - ...}{x^2 + \frac{x^4}{3} + \frac{2x^6}{15} + ...} = \frac{x^3(-\frac{1}{3} - \frac{2x^2}{15} - ...)}{x^2(1 + \frac{x^2}{3} + \frac{2x^4}{15} + ...)} = x \frac{-\frac{1}{3} - \frac{2x^2}{15} - ...}{1 + \frac{x^2}{3} + \frac{2x^4}{15} + ...}
As x0x \to 0, this approaches 0(13)=00 \cdot (-\frac{1}{3}) = 0.

3. Final Answer

(1) The limit of limx0(1xsinx) \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) is

1. (2) The limit of $ \lim_{x \to 0} (\frac{1}{\tan x} - \frac{1}{x}) $ is

0.

Related problems in "Analysis"

The problem asks us to find several limits and analyze the continuity of functions. We will tackle e...

LimitsContinuityPiecewise FunctionsDirect Substitution
2025/6/6

We are asked to solve four problems: 2.1. Use the Intermediate Value Theorem to show that there is a...

Intermediate Value TheoremLimitsPrecise Definition of LimitTrigonometric Limits
2025/6/6

The problem consists of 5 parts. 1.1. Given two functions $f(x)$ and $g(x)$, we need to find their d...

Domain and RangeContinuityLimitsPiecewise FunctionsAbsolute Value FunctionsFloor Function
2025/6/6

We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

LimitsCalculusTrigonometric LimitsPiecewise Functions
2025/6/6

We are given the function $f(x) = \sqrt{1 - \frac{x+13}{x^2+4x+3}}$ and asked to find its domain and...

DomainContinuityFunctionsInequalitiesSquare RootGreatest Integer Function
2025/6/6

The problem consists of several parts: Question 1 asks to find the derivatives of $f(x) = x^3$ and $...

DerivativesLimitsOptimizationNewton's Law of CoolingIntegralsSubstitutionDefinite IntegralsInverse Trigonometric FunctionsHyperbolic Functions
2025/6/6

We are given the function $f(x) = x\sqrt{5-x}$. We need to find: (a) The domain of $f$. (b) The x an...

CalculusFunctionsDerivativesDomainInterceptsCritical PointsIncreasing/DecreasingConcavityAsymptotesSketching
2025/6/6

We need to solve the following problems: 1.1 (a) Find the limit $\lim_{h \to 0} \frac{\frac{1}{(x+h)...

LimitsContinuityDerivativesDomainTrigonometric FunctionsInverse Trigonometric FunctionsTangent LineFloor Function
2025/6/6

We need to solve four problems related to limits and derivatives. 2.1. Prove that $\lim_{x\to -2} x^...

LimitsDerivativesLimit ProofsFirst Principle of DerivativesTrigonometric LimitsDefinition of LimitInfinite Limits
2025/6/6

The problem consists of several sub-problems. 1.1. Consider the function $f(x) = \begin{cases} 1 - ...

FunctionsDomainRangeContinuityLimitsPiecewise FunctionsIntervals
2025/6/6