(1) For the first limit, we have:
limx→0(x1⋅sinx)=limx→0xsinx We know that limx→0xsinx=1 (2) For the second limit, we have:
limx→0(tanx1−x1)=limx→0(xtanxx−tanx) Since limx→0(x−tanx)=0 and limx→0xtanx=0, we can use L'Hopital's rule. dxd(x−tanx)=1−sec2x=1−cos2x1=cos2xcos2x−1=cos2x−sin2x=−tan2x dxd(xtanx)=tanx+xsec2x Therefore,
limx→0xtanxx−tanx=limx→0tanx+xsec2x−tan2x=limx→0tanx+xsec2x−tan2x Since limx→0−tan2x=0 and limx→0tanx+xsec2x=0, we can apply L'Hopital's rule again. dxd(−tan2x)=−2tanxsec2x dxd(tanx+xsec2x)=sec2x+sec2x+x(2secx)(secxtanx)=2sec2x+2xsec2xtanx So,
limx→0tanx+xsec2x−tan2x=limx→02sec2x+2xsec2xtanx−2tanxsec2x=limx→0sec2x+xsec2xtanx−tanxsec2x=limx→01+xtanx−tanx Since limx→0−tanx=0 and limx→01+xtanx=1, we have: limx→01+xtanx−tanx=10=0 Alternatively, we can use Taylor series expansions:
tanx=x+3x3+152x5+... So,
tanx1−x1=xtanxx−tanx=x(x+3x3+152x5+...)x−(x+3x3+152x5+...)=x2+3x4+152x6+...−3x3−152x5−...=x2(1+3x2+152x4+...)x3(−31−152x2−...)=x1+3x2+152x4+...−31−152x2−... As x→0, this approaches 0⋅(−31)=0.