The problem is to simplify algebraic expressions by removing the brackets. The expressions are: (a) $(a4^3)^2$ (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a^3+a^5)$ (e) $2x^4(3x-5x^7)$ (f) $m^2(1-m)-2m(m+2m^2)$ (g) $ab(a^2+ab-b^2)$

AlgebraAlgebraic ExpressionsSimplificationExponentsPolynomialsPower of a PowerProduct of PowersDistributive Property
2025/4/16

1. Problem Description

The problem is to simplify algebraic expressions by removing the brackets. The expressions are:
(a) (a43)2(a4^3)^2
(b) (x5)3(x^5)^3
(c) (a2b3)4(a^2b^3)^4
(d) a2(a3+a5)a^2(a^3+a^5)
(e) 2x4(3x5x7)2x^4(3x-5x^7)
(f) m2(1m)2m(m+2m2)m^2(1-m)-2m(m+2m^2)
(g) ab(a2+abb2)ab(a^2+ab-b^2)

2. Solution Steps

(a) (a43)2=(a64)2=a2642=4096a2(a4^3)^2 = (a64)^2 = a^2 64^2 = 4096a^2
(b) (x5)3=x53=x15(x^5)^3 = x^{5*3} = x^{15}
The power of a power property states that (am)n=amn(a^m)^n = a^{mn}.
(c) (a2b3)4=a24b34=a8b12(a^2b^3)^4 = a^{2*4}b^{3*4} = a^8b^{12}
The power of a product property states that (ab)n=anbn(ab)^n = a^nb^n.
(d) a2(a3+a5)=a2a3+a2a5=a2+3+a2+5=a5+a7a^2(a^3+a^5) = a^2*a^3 + a^2*a^5 = a^{2+3} + a^{2+5} = a^5+a^7
The product of powers property states that aman=am+na^m * a^n = a^{m+n}.
(e) 2x4(3x5x7)=2x43x2x45x7=6x4+110x4+7=6x510x112x^4(3x-5x^7) = 2x^4*3x - 2x^4*5x^7 = 6x^{4+1} - 10x^{4+7} = 6x^5 - 10x^{11}
(f) m2(1m)2m(m+2m2)=m21m2m2mm2m2m2=m2m32m24m3=m22m2m34m3=m25m3m^2(1-m)-2m(m+2m^2) = m^2*1 - m^2*m - 2m*m - 2m*2m^2 = m^2 - m^3 - 2m^2 - 4m^3 = m^2-2m^2-m^3-4m^3 = -m^2 - 5m^3
(g) ab(a2+abb2)=aba2+abababb2=a3b+a2b2ab3ab(a^2+ab-b^2) = ab*a^2 + ab*ab - ab*b^2 = a^3b + a^2b^2 - ab^3

3. Final Answer

(a) 4096a24096a^2
(b) x15x^{15}
(c) a8b12a^8b^{12}
(d) a5+a7a^5+a^7
(e) 6x510x116x^5-10x^{11}
(f) m25m3-m^2-5m^3
(g) a3b+a2b2ab3a^3b+a^2b^2-ab^3

Related problems in "Algebra"

The problem states that we have an increasing arithmetic sequence ${a_n}$. The first term $a_1 = 2$....

Arithmetic SequenceGeometric SequenceSequences and SeriesCommon Difference
2025/4/17

We are given an arithmetic sequence $\{a_n\}$ with the first term $a_1 = 2$ and common difference $d...

SequencesSeriesArithmetic SequenceGeometric Sequence
2025/4/17

We are given a geometric sequence $\{a_n\}$. We know that $a_4 = 5$. We need to find the value of $a...

SequencesGeometric SequencesSeries
2025/4/17

The problem asks to simplify the given expressions and write them in positive index form. This means...

ExponentsSimplificationNegative ExponentsAlgebraic Expressions
2025/4/17

The problem asks to evaluate the following expressions: (a) $a^0 \times b^0$ (b) $x^0 + 2p^0 - a^0$ ...

ExponentsOrder of OperationsSimplification
2025/4/17

We are given that $x - \frac{1}{x} = m$. a) We need to find the value of $x^2 + \frac{1}{x^2}$. b) W...

Algebraic ManipulationEquationsExponentsVariables
2025/4/17

The problem requires us to simplify four algebraic expressions. (a) $\frac{a^4 \times a^3}{a^2}$ (b)...

ExponentsSimplificationAlgebraic Expressions
2025/4/17

The problem requires us to graph the exponential function $f(x) = 4 \cdot 2^x$.

Exponential FunctionsGraphingFunction EvaluationExponents
2025/4/17

Simplify the expression $(y^{\frac{3}{4}})^{\frac{1}{2}}$.

ExponentsSimplificationPower of a Power Rule
2025/4/17

The problem asks us to simplify the following expressions: (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a...

ExponentsSimplificationPolynomialsDistributive PropertyPower of a PowerProduct of Powers
2025/4/17