Given the function $f(x) = \frac{x^2 + 2x + 1}{x-1}$, we are asked to: 1) Find real numbers $a$, $b$, and $c$ such that $f(x) = ax + b + \frac{c}{x-1}$. 2) Find the limits of $f$ at the boundaries of its domain. 3) Determine the table of variations of $f$.

AnalysisLimitsDerivativesTable of VariationsRational Functions
2025/4/17

1. Problem Description

Given the function f(x)=x2+2x+1x1f(x) = \frac{x^2 + 2x + 1}{x-1}, we are asked to:
1) Find real numbers aa, bb, and cc such that f(x)=ax+b+cx1f(x) = ax + b + \frac{c}{x-1}.
2) Find the limits of ff at the boundaries of its domain.
3) Determine the table of variations of ff.

2. Solution Steps

1) To find aa, bb, and cc, we can perform polynomial long division on x2+2x+1x1\frac{x^2 + 2x + 1}{x-1}:
x2+2x+1=(x1)(x+3)+4x^2 + 2x + 1 = (x-1)(x+3) + 4.
Thus, x2+2x+1x1=(x1)(x+3)+4x1=x+3+4x1\frac{x^2 + 2x + 1}{x-1} = \frac{(x-1)(x+3) + 4}{x-1} = x+3 + \frac{4}{x-1}.
Therefore, a=1a=1, b=3b=3, and c=4c=4.
2) The domain of ff is Df=R{1}=(,1)(1,)D_f = \mathbb{R} \setminus \{1\} = (-\infty, 1) \cup (1, \infty). We need to find the limits of ff as xx \to -\infty, x1x \to 1^-, x1+x \to 1^+, and xx \to \infty.
limxf(x)=limx(x+3+4x1)=+3+0=\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x+3 + \frac{4}{x-1}\right) = -\infty + 3 + 0 = -\infty.
limxf(x)=limx(x+3+4x1)=+3+0=\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(x+3 + \frac{4}{x-1}\right) = \infty + 3 + 0 = \infty.
limx1f(x)=limx1(x+3+4x1)=1+3+411=4+40=4=\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(x+3 + \frac{4}{x-1}\right) = 1+3 + \frac{4}{1^- - 1} = 4 + \frac{4}{0^-} = 4 - \infty = -\infty.
limx1+f(x)=limx1+(x+3+4x1)=1+3+41+1=4+40+=4+=\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(x+3 + \frac{4}{x-1}\right) = 1+3 + \frac{4}{1^+ - 1} = 4 + \frac{4}{0^+} = 4 + \infty = \infty.
3) To determine the table of variations of ff, we need to find the derivative of f(x)f(x).
f(x)=x+3+4x1=x+3+4(x1)1f(x) = x+3 + \frac{4}{x-1} = x+3 + 4(x-1)^{-1}.
f(x)=14(x1)2=14(x1)2=(x1)24(x1)2=x22x+14(x1)2=x22x3(x1)2=(x3)(x+1)(x1)2f'(x) = 1 - 4(x-1)^{-2} = 1 - \frac{4}{(x-1)^2} = \frac{(x-1)^2 - 4}{(x-1)^2} = \frac{x^2 - 2x + 1 - 4}{(x-1)^2} = \frac{x^2 - 2x - 3}{(x-1)^2} = \frac{(x-3)(x+1)}{(x-1)^2}.
f(x)=0f'(x) = 0 when x=1x = -1 or x=3x = 3.
The denominator (x1)2(x-1)^2 is always positive (except at x=1x=1).
The sign of f(x)f'(x) depends on the sign of (x3)(x+1)(x-3)(x+1).
- If x<1x < -1, then x3<0x-3 < 0 and x+1<0x+1 < 0, so f(x)>0f'(x) > 0.
- If 1<x<1-1 < x < 1, then x3<0x-3 < 0 and x+1>0x+1 > 0, so f(x)<0f'(x) < 0.
- If 1<x<31 < x < 3, then x3<0x-3 < 0 and x+1>0x+1 > 0, so f(x)<0f'(x) < 0.
- If x>3x > 3, then x3>0x-3 > 0 and x+1>0x+1 > 0, so f(x)>0f'(x) > 0.
f(1)=(1)2+2(1)+111=12+12=02=0f(-1) = \frac{(-1)^2 + 2(-1) + 1}{-1-1} = \frac{1-2+1}{-2} = \frac{0}{-2} = 0.
f(3)=32+2(3)+131=9+6+12=162=8f(3) = \frac{3^2 + 2(3) + 1}{3-1} = \frac{9+6+1}{2} = \frac{16}{2} = 8.
Table of variations:
x | -inf -1 1 3 +inf
---------------------------------
f'(x) | + 0 - - 0 +
---------------------------------
f(x) | -inf inc 0 dec -inf inf dec 8 inc +inf

3. Final Answer

1) a=1a=1, b=3b=3, c=4c=4.
2) limxf(x)=\lim_{x \to -\infty} f(x) = -\infty, limxf(x)=\lim_{x \to \infty} f(x) = \infty, limx1f(x)=\lim_{x \to 1^-} f(x) = -\infty, limx1+f(x)=\lim_{x \to 1^+} f(x) = \infty.
3) Table of variations:
x | -inf -1 1 3 +inf
---------------------------------
f'(x) | + 0 - - 0 +
---------------------------------
f(x) | -inf inc 0 dec -inf inf dec 8 inc +inf

Related problems in "Analysis"

The problem asks us to find several limits and analyze the continuity of functions. We will tackle e...

LimitsContinuityPiecewise FunctionsDirect Substitution
2025/6/6

We are asked to solve four problems: 2.1. Use the Intermediate Value Theorem to show that there is a...

Intermediate Value TheoremLimitsPrecise Definition of LimitTrigonometric Limits
2025/6/6

The problem consists of 5 parts. 1.1. Given two functions $f(x)$ and $g(x)$, we need to find their d...

Domain and RangeContinuityLimitsPiecewise FunctionsAbsolute Value FunctionsFloor Function
2025/6/6

We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

LimitsCalculusTrigonometric LimitsPiecewise Functions
2025/6/6

We are given the function $f(x) = \sqrt{1 - \frac{x+13}{x^2+4x+3}}$ and asked to find its domain and...

DomainContinuityFunctionsInequalitiesSquare RootGreatest Integer Function
2025/6/6

The problem consists of several parts: Question 1 asks to find the derivatives of $f(x) = x^3$ and $...

DerivativesLimitsOptimizationNewton's Law of CoolingIntegralsSubstitutionDefinite IntegralsInverse Trigonometric FunctionsHyperbolic Functions
2025/6/6

We are given the function $f(x) = x\sqrt{5-x}$. We need to find: (a) The domain of $f$. (b) The x an...

CalculusFunctionsDerivativesDomainInterceptsCritical PointsIncreasing/DecreasingConcavityAsymptotesSketching
2025/6/6

We need to solve the following problems: 1.1 (a) Find the limit $\lim_{h \to 0} \frac{\frac{1}{(x+h)...

LimitsContinuityDerivativesDomainTrigonometric FunctionsInverse Trigonometric FunctionsTangent LineFloor Function
2025/6/6

We need to solve four problems related to limits and derivatives. 2.1. Prove that $\lim_{x\to -2} x^...

LimitsDerivativesLimit ProofsFirst Principle of DerivativesTrigonometric LimitsDefinition of LimitInfinite Limits
2025/6/6

The problem consists of several sub-problems. 1.1. Consider the function $f(x) = \begin{cases} 1 - ...

FunctionsDomainRangeContinuityLimitsPiecewise FunctionsIntervals
2025/6/6