1) To find a, b, and c, we can perform polynomial long division on x−1x2+2x+1: x2+2x+1=(x−1)(x+3)+4. Thus, x−1x2+2x+1=x−1(x−1)(x+3)+4=x+3+x−14. Therefore, a=1, b=3, and c=4. 2) The domain of f is Df=R∖{1}=(−∞,1)∪(1,∞). We need to find the limits of f as x→−∞, x→1−, x→1+, and x→∞. limx→−∞f(x)=limx→−∞(x+3+x−14)=−∞+3+0=−∞. limx→∞f(x)=limx→∞(x+3+x−14)=∞+3+0=∞. limx→1−f(x)=limx→1−(x+3+x−14)=1+3+1−−14=4+0−4=4−∞=−∞. limx→1+f(x)=limx→1+(x+3+x−14)=1+3+1+−14=4+0+4=4+∞=∞. 3) To determine the table of variations of f, we need to find the derivative of f(x). f(x)=x+3+x−14=x+3+4(x−1)−1. f′(x)=1−4(x−1)−2=1−(x−1)24=(x−1)2(x−1)2−4=(x−1)2x2−2x+1−4=(x−1)2x2−2x−3=(x−1)2(x−3)(x+1). f′(x)=0 when x=−1 or x=3. The denominator (x−1)2 is always positive (except at x=1). The sign of f′(x) depends on the sign of (x−3)(x+1). - If x<−1, then x−3<0 and x+1<0, so f′(x)>0. - If −1<x<1, then x−3<0 and x+1>0, so f′(x)<0. - If 1<x<3, then x−3<0 and x+1>0, so f′(x)<0. - If x>3, then x−3>0 and x+1>0, so f′(x)>0. f(−1)=−1−1(−1)2+2(−1)+1=−21−2+1=−20=0. f(3)=3−132+2(3)+1=29+6+1=216=8. Table of variations:
x | -inf -1 1 3 +inf
---------------------------------
f'(x) | + 0 - - 0 +
---------------------------------
f(x) | -inf inc 0 dec -inf inf dec 8 inc +inf