Given the function $f(x) = \frac{x^2 + 2x + 1}{x-1}$, we are asked to: 1) Find real numbers $a$, $b$, and $c$ such that $f(x) = ax + b + \frac{c}{x-1}$. 2) Find the limits of $f$ at the boundaries of its domain. 3) Determine the table of variations of $f$.

AnalysisLimitsDerivativesTable of VariationsRational Functions
2025/4/17

1. Problem Description

Given the function f(x)=x2+2x+1x1f(x) = \frac{x^2 + 2x + 1}{x-1}, we are asked to:
1) Find real numbers aa, bb, and cc such that f(x)=ax+b+cx1f(x) = ax + b + \frac{c}{x-1}.
2) Find the limits of ff at the boundaries of its domain.
3) Determine the table of variations of ff.

2. Solution Steps

1) To find aa, bb, and cc, we can perform polynomial long division on x2+2x+1x1\frac{x^2 + 2x + 1}{x-1}:
x2+2x+1=(x1)(x+3)+4x^2 + 2x + 1 = (x-1)(x+3) + 4.
Thus, x2+2x+1x1=(x1)(x+3)+4x1=x+3+4x1\frac{x^2 + 2x + 1}{x-1} = \frac{(x-1)(x+3) + 4}{x-1} = x+3 + \frac{4}{x-1}.
Therefore, a=1a=1, b=3b=3, and c=4c=4.
2) The domain of ff is Df=R{1}=(,1)(1,)D_f = \mathbb{R} \setminus \{1\} = (-\infty, 1) \cup (1, \infty). We need to find the limits of ff as xx \to -\infty, x1x \to 1^-, x1+x \to 1^+, and xx \to \infty.
limxf(x)=limx(x+3+4x1)=+3+0=\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x+3 + \frac{4}{x-1}\right) = -\infty + 3 + 0 = -\infty.
limxf(x)=limx(x+3+4x1)=+3+0=\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(x+3 + \frac{4}{x-1}\right) = \infty + 3 + 0 = \infty.
limx1f(x)=limx1(x+3+4x1)=1+3+411=4+40=4=\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(x+3 + \frac{4}{x-1}\right) = 1+3 + \frac{4}{1^- - 1} = 4 + \frac{4}{0^-} = 4 - \infty = -\infty.
limx1+f(x)=limx1+(x+3+4x1)=1+3+41+1=4+40+=4+=\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(x+3 + \frac{4}{x-1}\right) = 1+3 + \frac{4}{1^+ - 1} = 4 + \frac{4}{0^+} = 4 + \infty = \infty.
3) To determine the table of variations of ff, we need to find the derivative of f(x)f(x).
f(x)=x+3+4x1=x+3+4(x1)1f(x) = x+3 + \frac{4}{x-1} = x+3 + 4(x-1)^{-1}.
f(x)=14(x1)2=14(x1)2=(x1)24(x1)2=x22x+14(x1)2=x22x3(x1)2=(x3)(x+1)(x1)2f'(x) = 1 - 4(x-1)^{-2} = 1 - \frac{4}{(x-1)^2} = \frac{(x-1)^2 - 4}{(x-1)^2} = \frac{x^2 - 2x + 1 - 4}{(x-1)^2} = \frac{x^2 - 2x - 3}{(x-1)^2} = \frac{(x-3)(x+1)}{(x-1)^2}.
f(x)=0f'(x) = 0 when x=1x = -1 or x=3x = 3.
The denominator (x1)2(x-1)^2 is always positive (except at x=1x=1).
The sign of f(x)f'(x) depends on the sign of (x3)(x+1)(x-3)(x+1).
- If x<1x < -1, then x3<0x-3 < 0 and x+1<0x+1 < 0, so f(x)>0f'(x) > 0.
- If 1<x<1-1 < x < 1, then x3<0x-3 < 0 and x+1>0x+1 > 0, so f(x)<0f'(x) < 0.
- If 1<x<31 < x < 3, then x3<0x-3 < 0 and x+1>0x+1 > 0, so f(x)<0f'(x) < 0.
- If x>3x > 3, then x3>0x-3 > 0 and x+1>0x+1 > 0, so f(x)>0f'(x) > 0.
f(1)=(1)2+2(1)+111=12+12=02=0f(-1) = \frac{(-1)^2 + 2(-1) + 1}{-1-1} = \frac{1-2+1}{-2} = \frac{0}{-2} = 0.
f(3)=32+2(3)+131=9+6+12=162=8f(3) = \frac{3^2 + 2(3) + 1}{3-1} = \frac{9+6+1}{2} = \frac{16}{2} = 8.
Table of variations:
x | -inf -1 1 3 +inf
---------------------------------
f'(x) | + 0 - - 0 +
---------------------------------
f(x) | -inf inc 0 dec -inf inf dec 8 inc +inf

3. Final Answer

1) a=1a=1, b=3b=3, c=4c=4.
2) limxf(x)=\lim_{x \to -\infty} f(x) = -\infty, limxf(x)=\lim_{x \to \infty} f(x) = \infty, limx1f(x)=\lim_{x \to 1^-} f(x) = -\infty, limx1+f(x)=\lim_{x \to 1^+} f(x) = \infty.
3) Table of variations:
x | -inf -1 1 3 +inf
---------------------------------
f'(x) | + 0 - - 0 +
---------------------------------
f(x) | -inf inc 0 dec -inf inf dec 8 inc +inf

Related problems in "Analysis"

The question asks how the domains of the pieces of a piecewise-defined function relate to the entire...

Piecewise FunctionsDomainFunction Definition
2025/4/18

The problem asks us to analyze the function $f(x) = 5 \cdot (\frac{1}{2})^x$ and graph it.

Exponential FunctionsFunction AnalysisGraphing
2025/4/17

We are given two functions: $f(x) = x + 2 + \frac{4}{x-1}$ and $g(x) = x \ln x$. We need to study th...

CalculusDerivativesFunction AnalysisIncreasing/Decreasing FunctionsCritical Points
2025/4/16

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14