The problem asks us to evaluate the infinite sum $\sum_{n=1}^{\infty} \frac{x^n}{(n-1)!}$.

AnalysisInfinite SeriesTaylor SeriesExponential FunctionSummation
2025/3/15

1. Problem Description

The problem asks us to evaluate the infinite sum n=1xn(n1)!\sum_{n=1}^{\infty} \frac{x^n}{(n-1)!}.

2. Solution Steps

We can rewrite the sum by changing the index. Let k=n1k = n-1. Then n=k+1n = k+1. When n=1n=1, k=0k=0. So we have
n=1xn(n1)!=k=0xk+1k!=xk=0xkk!\sum_{n=1}^{\infty} \frac{x^n}{(n-1)!} = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k!} = x \sum_{k=0}^{\infty} \frac{x^k}{k!}
We know that the Taylor series expansion for exe^x is
ex=k=0xkk!e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}
Thus,
xk=0xkk!=xexx \sum_{k=0}^{\infty} \frac{x^k}{k!} = x e^x

3. Final Answer

xexxe^x

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1