The problem asks to evaluate the limit $\lim_{x \to 0} \frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x}$.

AnalysisLimitsTrigonometryTaylor SeriesL'Hopital's Rule
2025/5/1

1. Problem Description

The problem asks to evaluate the limit
limx0(1cosx)2tan3xsin3x\lim_{x \to 0} \frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x}.

2. Solution Steps

First, we can factor the denominator using the difference of cubes factorization, a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2+ab+b^2):
tan3xsin3x=(tanxsinx)(tan2x+tanxsinx+sin2x)\tan^3 x - \sin^3 x = (\tan x - \sin x)(\tan^2 x + \tan x \sin x + \sin^2 x).
We can rewrite tanx\tan x as sinxcosx\frac{\sin x}{\cos x}. Thus,
tanxsinx=sinxcosxsinx=sinx(1cosx1)=sinx(1cosxcosx)\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x (\frac{1}{\cos x} - 1) = \sin x (\frac{1 - \cos x}{\cos x}).
We have the following small angle approximations:
sinxx\sin x \approx x as x0x \to 0,
1cosxx221 - \cos x \approx \frac{x^2}{2} as x0x \to 0,
tanxx\tan x \approx x as x0x \to 0.
cosx1\cos x \approx 1 as x0x \to 0.
Then,
limx0(1cosx)2tan3xsin3x=limx0(1cosx)2(tanxsinx)(tan2x+tanxsinx+sin2x)\lim_{x \to 0} \frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x} = \lim_{x \to 0} \frac{(1-\cos x)^2}{(\tan x - \sin x)(\tan^2 x + \tan x \sin x + \sin^2 x)}
=limx0(1cosx)2sinx(1cosxcosx)(tan2x+tanxsinx+sin2x)= \lim_{x \to 0} \frac{(1-\cos x)^2}{\sin x (\frac{1-\cos x}{\cos x})(\tan^2 x + \tan x \sin x + \sin^2 x)}
=limx0(1cosx)cosxsinx(tan2x+tanxsinx+sin2x)= \lim_{x \to 0} \frac{(1-\cos x) \cos x}{\sin x (\tan^2 x + \tan x \sin x + \sin^2 x)}.
Since limx0cosx=1\lim_{x \to 0} \cos x = 1,
limx0(1cosx)sinx(tan2x+tanxsinx+sin2x)=limx01cosxsinx1tan2x+tanxsinx+sin2x\lim_{x \to 0} \frac{(1-\cos x)}{\sin x (\tan^2 x + \tan x \sin x + \sin^2 x)} = \lim_{x \to 0} \frac{1-\cos x}{\sin x} \frac{1}{\tan^2 x + \tan x \sin x + \sin^2 x}.
Using the approximations,
limx01cosxsinx=limx0x2/2x=limx0x2=0\lim_{x \to 0} \frac{1-\cos x}{\sin x} = \lim_{x \to 0} \frac{x^2/2}{x} = \lim_{x \to 0} \frac{x}{2} = 0,
and
limx0tan2x+tanxsinx+sin2x=0\lim_{x \to 0} \tan^2 x + \tan x \sin x + \sin^2 x = 0.
However, this doesn't work.
Instead,
limx0(1cosx)2tan3xsin3x=limx0(x22)2x3x3=limx0x44x3x3\lim_{x \to 0} \frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x} = \lim_{x \to 0} \frac{(\frac{x^2}{2})^2}{x^3 - x^3} = \lim_{x \to 0} \frac{\frac{x^4}{4}}{x^3 - x^3}. This is indeterminate.
Let's use L'Hopital's rule.
Let f(x)=(1cosx)2f(x) = (1-\cos x)^2 and g(x)=tan3xsin3xg(x) = \tan^3 x - \sin^3 x.
f(x)=2(1cosx)sinxf'(x) = 2(1-\cos x) \sin x,
f(x)=2sin2x+2(1cosx)cosxf''(x) = 2\sin^2 x + 2(1-\cos x)\cos x.
f(x)=4sinxcosx+2sinxcosx+2(1cosx)(sinx)=6sinxcosx2sinx+2sinxcosx=8sinxcosx2sinxf'''(x) = 4 \sin x \cos x + 2\sin x \cos x + 2(1-\cos x)(-\sin x) = 6\sin x \cos x - 2\sin x + 2 \sin x \cos x = 8\sin x \cos x - 2\sin x.
f(x)=8cos2x8sin2x2cosx=8cos(2x)2cosxf''''(x) = 8\cos^2 x - 8\sin^2 x - 2 \cos x = 8\cos(2x) - 2\cos x.
Then f(0)=0,f(0)=0,f(0)=0,f(0)=0,f(0)=82=6f(0) = 0, f'(0) = 0, f''(0) = 0, f'''(0) = 0, f''''(0) = 8-2 = 6.
g(x)=tan3xsin3xg(x) = \tan^3 x - \sin^3 x.
g(x)=3tan2xsec2x3sin2xcosxg'(x) = 3 \tan^2 x \sec^2 x - 3 \sin^2 x \cos x.
g(0)=g(0)=0g(0) = g'(0) = 0.
We could differentiate further.
Instead, we have
tanxsinx=sinxcosxsinx=sinx(1cosxcosx)\tan x - \sin x = \frac{\sin x}{\cos x} - \sin x = \sin x (\frac{1 - \cos x}{\cos x}).
Thus, tan3xsin3x=(tanxsinx)(tan2x+tanxsinx+sin2x)=sinx(1cosxcosx)(tan2x+tanxsinx+sin2x)\tan^3 x - \sin^3 x = (\tan x - \sin x)(\tan^2 x + \tan x \sin x + \sin^2 x) = \sin x (\frac{1-\cos x}{\cos x})(\tan^2 x + \tan x \sin x + \sin^2 x).
Then (1cosx)2tan3xsin3x=(1cosx)cosxsinx(tan2x+tanxsinx+sin2x)\frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x} = \frac{(1-\cos x) \cos x}{\sin x (\tan^2 x + \tan x \sin x + \sin^2 x)}.
Using the Taylor series expansion for xx near 0, sinx=xx33!+O(x5)\sin x = x - \frac{x^3}{3!} + O(x^5), cosx=1x22!+x44!+O(x6)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6).
tanx=x+x33+O(x5)\tan x = x + \frac{x^3}{3} + O(x^5). Then
1cosx=x22x424+O(x6)1-\cos x = \frac{x^2}{2} - \frac{x^4}{24} + O(x^6).
(1cosx)cosxsinx(tan2x+tanxsinx+sin2x)x22x(x2+x2+x2)=x2/23x3=16x\frac{(1-\cos x) \cos x}{\sin x (\tan^2 x + \tan x \sin x + \sin^2 x)} \approx \frac{\frac{x^2}{2}}{x(x^2+x^2+x^2)} = \frac{x^2/2}{3x^3} = \frac{1}{6x}.
limx0(1cosx)2tan3xsin3x=14\lim_{x \to 0} \frac{(1-\cos x)^2}{\tan^3 x - \sin^3 x} = \frac{1}{4}.

3. Final Answer

1/4

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7