First, we can factor the denominator using the difference of cubes factorization, a3−b3=(a−b)(a2+ab+b2): tan3x−sin3x=(tanx−sinx)(tan2x+tanxsinx+sin2x). We can rewrite tanx as cosxsinx. Thus, tanx−sinx=cosxsinx−sinx=sinx(cosx1−1)=sinx(cosx1−cosx). We have the following small angle approximations:
sinx≈x as x→0, 1−cosx≈2x2 as x→0, tanx≈x as x→0. cosx≈1 as x→0. Then,
limx→0tan3x−sin3x(1−cosx)2=limx→0(tanx−sinx)(tan2x+tanxsinx+sin2x)(1−cosx)2 =limx→0sinx(cosx1−cosx)(tan2x+tanxsinx+sin2x)(1−cosx)2 =limx→0sinx(tan2x+tanxsinx+sin2x)(1−cosx)cosx. Since limx→0cosx=1, limx→0sinx(tan2x+tanxsinx+sin2x)(1−cosx)=limx→0sinx1−cosxtan2x+tanxsinx+sin2x1. Using the approximations,
limx→0sinx1−cosx=limx→0xx2/2=limx→02x=0, and
limx→0tan2x+tanxsinx+sin2x=0. However, this doesn't work.
Instead,
limx→0tan3x−sin3x(1−cosx)2=limx→0x3−x3(2x2)2=limx→0x3−x34x4. This is indeterminate. Let's use L'Hopital's rule.
Let f(x)=(1−cosx)2 and g(x)=tan3x−sin3x. f′(x)=2(1−cosx)sinx, f′′(x)=2sin2x+2(1−cosx)cosx. f′′′(x)=4sinxcosx+2sinxcosx+2(1−cosx)(−sinx)=6sinxcosx−2sinx+2sinxcosx=8sinxcosx−2sinx. f′′′′(x)=8cos2x−8sin2x−2cosx=8cos(2x)−2cosx. Then f(0)=0,f′(0)=0,f′′(0)=0,f′′′(0)=0,f′′′′(0)=8−2=6. g(x)=tan3x−sin3x. g′(x)=3tan2xsec2x−3sin2xcosx. g(0)=g′(0)=0. We could differentiate further.
Instead, we have
tanx−sinx=cosxsinx−sinx=sinx(cosx1−cosx). Thus, tan3x−sin3x=(tanx−sinx)(tan2x+tanxsinx+sin2x)=sinx(cosx1−cosx)(tan2x+tanxsinx+sin2x). Then tan3x−sin3x(1−cosx)2=sinx(tan2x+tanxsinx+sin2x)(1−cosx)cosx. Using the Taylor series expansion for x near 0, sinx=x−3!x3+O(x5), cosx=1−2!x2+4!x4+O(x6). tanx=x+3x3+O(x5). Then 1−cosx=2x2−24x4+O(x6). sinx(tan2x+tanxsinx+sin2x)(1−cosx)cosx≈x(x2+x2+x2)2x2=3x3x2/2=6x1. limx→0tan3x−sin3x(1−cosx)2=41.