The question asks which of the following integrals is easily integrated by substituting $x = 6 \tan \theta$. The given options are: A. $\int \frac{1}{\sqrt{36+x^2}} dx$ B. $\int \frac{1}{\sqrt{36-x^2}} dx$ C. $\int \frac{1}{\sqrt{6-x^2}} dx$ D. $\int \frac{1}{\sqrt{6+x^2}} dx$

AnalysisIntegrationTrigonometric SubstitutionDefinite Integrals
2025/5/2

1. Problem Description

The question asks which of the following integrals is easily integrated by substituting x=6tanθx = 6 \tan \theta. The given options are:
A. 136+x2dx\int \frac{1}{\sqrt{36+x^2}} dx
B. 136x2dx\int \frac{1}{\sqrt{36-x^2}} dx
C. 16x2dx\int \frac{1}{\sqrt{6-x^2}} dx
D. 16+x2dx\int \frac{1}{\sqrt{6+x^2}} dx

2. Solution Steps

We are given the substitution x=6tanθx = 6 \tan \theta. This suggests that x2=36tan2θx^2 = 36 \tan^2 \theta. Let's examine how this substitution would simplify each integral:
A. 136+x2dx=136+36tan2θdx=136(1+tan2θ)dx=16sec2θdx=16secθdx\int \frac{1}{\sqrt{36+x^2}} dx = \int \frac{1}{\sqrt{36 + 36 \tan^2 \theta}} dx = \int \frac{1}{\sqrt{36(1 + \tan^2 \theta)}} dx = \int \frac{1}{6\sqrt{\sec^2 \theta}} dx = \int \frac{1}{6 \sec \theta} dx. Since x=6tanθx = 6 \tan \theta, dx=6sec2θdθdx = 6 \sec^2 \theta d\theta. Therefore, the integral becomes 16secθ6sec2θdθ=secθdθ\int \frac{1}{6 \sec \theta} 6 \sec^2 \theta d\theta = \int \sec \theta d\theta, which is a standard integral.
B. 136x2dx=13636tan2θdx=136(1tan2θ)dx\int \frac{1}{\sqrt{36-x^2}} dx = \int \frac{1}{\sqrt{36 - 36 \tan^2 \theta}} dx = \int \frac{1}{\sqrt{36(1 - \tan^2 \theta)}} dx. The expression 1tan2θ1 - \tan^2 \theta does not simplify nicely.
C. 16x2dx\int \frac{1}{\sqrt{6-x^2}} dx. Here, the constant term is 6, not 36, so x=6tanθx = 6 \tan \theta is not the appropriate substitution.
D. 16+x2dx\int \frac{1}{\sqrt{6+x^2}} dx. Here, the constant term is 6, not 36, so x=6tanθx = 6 \tan \theta is not the appropriate substitution.
We can analyze the first option in more detail:
If x=6tanθx = 6 \tan \theta, then dx=6sec2θdθdx = 6 \sec^2 \theta d\theta. Then 36+x2=36+36tan2θ=36(1+tan2θ)=36sec2θ=6secθ\sqrt{36 + x^2} = \sqrt{36 + 36 \tan^2 \theta} = \sqrt{36(1 + \tan^2 \theta)} = \sqrt{36 \sec^2 \theta} = 6 \sec \theta. Thus, the integral becomes
136+x2dx=16secθ6sec2θdθ=secθdθ=lnsecθ+tanθ+C\int \frac{1}{\sqrt{36+x^2}} dx = \int \frac{1}{6 \sec \theta} 6 \sec^2 \theta d\theta = \int \sec \theta d\theta = \ln|\sec \theta + \tan \theta| + C. Since x=6tanθx = 6 \tan \theta, we have tanθ=x6\tan \theta = \frac{x}{6}. Then secθ=1+tan2θ=1+x236=36+x236=36+x26\sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \frac{x^2}{36}} = \sqrt{\frac{36 + x^2}{36}} = \frac{\sqrt{36 + x^2}}{6}. Therefore, the integral is ln36+x26+x6+C=ln36+x2+xln6+C=ln36+x2+x+C\ln|\frac{\sqrt{36 + x^2}}{6} + \frac{x}{6}| + C = \ln|\sqrt{36 + x^2} + x| - \ln 6 + C = \ln|\sqrt{36 + x^2} + x| + C', which is a valid result.

3. Final Answer

A. 136+x2dx\int \frac{1}{\sqrt{36+x^2}} dx

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7