We are asked to evaluate the integral $\int \frac{2x+1}{(x-1)(x^2+1)} dx$.

AnalysisIntegrationPartial FractionsCalculus
2025/5/2

1. Problem Description

We are asked to evaluate the integral 2x+1(x1)(x2+1)dx\int \frac{2x+1}{(x-1)(x^2+1)} dx.

2. Solution Steps

First, we decompose the integrand into partial fractions. We want to find constants A, B, and C such that:
2x+1(x1)(x2+1)=Ax1+Bx+Cx2+1 \frac{2x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}
Multiplying both sides by (x1)(x2+1)(x-1)(x^2+1), we have:
2x+1=A(x2+1)+(Bx+C)(x1) 2x+1 = A(x^2+1) + (Bx+C)(x-1)
2x+1=Ax2+A+Bx2Bx+CxC 2x+1 = Ax^2 + A + Bx^2 - Bx + Cx - C
2x+1=(A+B)x2+(CB)x+(AC) 2x+1 = (A+B)x^2 + (C-B)x + (A-C)
Equating coefficients, we get the following system of equations:
A+B=0 A+B = 0
CB=2 C-B = 2
AC=1 A-C = 1
From the first equation, B=AB = -A.
Substituting into the second equation, C+A=2C+A = 2.
Adding this to the third equation, AC=1A-C = 1, we get 2A=32A = 3, so A=32A = \frac{3}{2}.
Then B=A=32B = -A = -\frac{3}{2}.
And C=A1=321=12C = A-1 = \frac{3}{2} - 1 = \frac{1}{2}.
Therefore,
2x+1(x1)(x2+1)=32x1+32x+12x2+1=32(x1)+3x+12(x2+1) \frac{2x+1}{(x-1)(x^2+1)} = \frac{\frac{3}{2}}{x-1} + \frac{-\frac{3}{2}x + \frac{1}{2}}{x^2+1} = \frac{3}{2(x-1)} + \frac{-3x+1}{2(x^2+1)}
Now we can integrate:
2x+1(x1)(x2+1)dx=(32(x1)+3x+12(x2+1))dx \int \frac{2x+1}{(x-1)(x^2+1)} dx = \int \left( \frac{3}{2(x-1)} + \frac{-3x+1}{2(x^2+1)} \right) dx
=321x1dx32xx2+1dx+121x2+1dx = \frac{3}{2} \int \frac{1}{x-1} dx - \frac{3}{2} \int \frac{x}{x^2+1} dx + \frac{1}{2} \int \frac{1}{x^2+1} dx
The first integral is 32lnx1\frac{3}{2} \ln|x-1|.
For the second integral, we can use the substitution u=x2+1u = x^2+1, so du=2xdxdu = 2x dx, and xdx=12dux dx = \frac{1}{2}du.
xx2+1dx=12udu=12lnu=12ln(x2+1) \int \frac{x}{x^2+1} dx = \int \frac{1}{2u} du = \frac{1}{2} \ln|u| = \frac{1}{2} \ln(x^2+1)
(Note that we don't need absolute values here since x2+1>0x^2+1>0).
So, 32xx2+1dx=3212ln(x2+1)=34ln(x2+1)-\frac{3}{2} \int \frac{x}{x^2+1} dx = -\frac{3}{2} \cdot \frac{1}{2} \ln(x^2+1) = -\frac{3}{4} \ln(x^2+1).
The third integral is 121x2+1dx=12arctan(x)\frac{1}{2} \int \frac{1}{x^2+1} dx = \frac{1}{2} \arctan(x).
Therefore,
2x+1(x1)(x2+1)dx=32lnx134ln(x2+1)+12arctan(x)+C \int \frac{2x+1}{(x-1)(x^2+1)} dx = \frac{3}{2} \ln|x-1| - \frac{3}{4} \ln(x^2+1) + \frac{1}{2} \arctan(x) + C
=32lnx112(32ln(x2+1))+12arctan(x)+C = \frac{3}{2} \ln|x-1| - \frac{1}{2} (\frac{3}{2} \ln(x^2+1)) + \frac{1}{2} \arctan(x) + C
Comparing with the answer options, note that arctan(x)=tan1(x)\arctan(x) = \tan^{-1}(x).
Also note that 34ln(x2+1)=1232ln(x2+1)\frac{3}{4} \ln(x^2+1) = \frac{1}{2} \cdot \frac{3}{2} \ln(x^2+1), so D looks most promising.

3. Final Answer

D. 32(lnx112lnx2+1+tan1(x))+C\frac{3}{2} (ln|x-1| - \frac{1}{2} ln|x^2+1| + tan^{-1}(x)) + C

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7