First, we express each number as a product of prime factors.
314=314 420=(22)20=240 519=519 615=(2×3)15=215×315 86=(23)6=218 92=(32)2=34 103=(2×5)3=23×53 111=111 121=(22×3)1=22×31 Now, substitute these expressions into the original equation:
G=(12×28×314×240×519×215×315×79×218×34×23×53×111×22×31)1001 Collect the exponents of the prime numbers:
Exponent of 2: 8+40+15+18+3+2=86 Exponent of 3: 14+15+4+1=34 Exponent of 5: 19+3=22 G=(286×334×522×79×111)1001 G=210086×310034×510022×71009×111001 G=20.86×30.34×50.22×70.09×110.01 This is not simplifying nicely to an integer, so let's double check if the question was interpreted correctly.
G=(12×28×314×420×519×615×79×86×92×103×111×121)1001 G=(12×28×314×(22)20×519×(2×3)15×79×(23)6×(32)2×(2×5)3×111×(22×3)1)1001 G=(286×334×522×79×11)1001 Let's try writing out the first few factorials and compare.
3!=6=2×3 4!=24=23×3 5!=120=23×3×5 6!=720=24×32×5 7!=5040=24×32×5×7 8!=40320=27×32×5×7 9!=362880=27×34×5×7 10!=3628800=28×34×52×7 11!=39916800=28×34×52×7×11 12!=479001600=210×35×52×7×11 G=(1!×2!×3!×...×12!)12!=(∏k=112k!) The original expression looks quite similar to
G=∏n=112n13−n=112×211×310×49×58×67×76×85×94×103×112×121 If we divide the exponent of each term by 100, then the answer is not an integer. This implies that there is something missing in the original transcription, or that the powers are written down incorrectly.
The correct expression simplifies to:
(12×28×314×420×519×615×79×86×92×103×111×121)=(11!)=39916800. But taking the 100th root doesn't give a clean answer.