(1) 正七角形の7個の頂点のうち2点を結んでできる直線の本数を求める問題。 (2) 正五角形の5個の頂点のうち3点を結んでできる三角形の個数を求める問題。

幾何学組み合わせ図形正多角形
2025/5/5

1. 問題の内容

(1) 正七角形の7個の頂点のうち2点を結んでできる直線の本数を求める問題。
(2) 正五角形の5個の頂点のうち3点を結んでできる三角形の個数を求める問題。

2. 解き方の手順

(1) 7個の頂点から2個の頂点を選ぶ組み合わせの数を求める。これは組み合わせの記号を用いて 7C2_7C_2 と表される。
7C2=7!2!(72)!=7!2!5!=7×62×1=21_7C_2 = \frac{7!}{2!(7-2)!} = \frac{7!}{2!5!} = \frac{7 \times 6}{2 \times 1} = 21
(2) 5個の頂点から3個の頂点を選ぶ組み合わせの数を求める。これは組み合わせの記号を用いて 5C3_5C_3 と表される。
5C3=5!3!(53)!=5!3!2!=5×42×1=10_5C_3 = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5 \times 4}{2 \times 1} = 10

3. 最終的な答え

(1) 21本
(2) 10個

「幾何学」の関連問題

三角形ABCにおいて、AB=7, BC=5, CA=3である。ADは角Aの二等分線、AEは角Aの外角の二等分線である。このとき、BD, CD, BEの長さを求めよ。

三角形角の二等分線幾何
2025/5/5

三角形ABCにおいて、辺BCを2:1に内分する点をDとし、線分ADを3:2に内分する点をEとする。線分CEの延長線がABと交わる点をFとするとき、線分AFと線分FBの長さの比AF:FBを求める。

幾何三角形チェバの定理メネラウスの定理
2025/5/5

直角三角形OABがあり、OA=2、∠OBA=π/2である。辺ABをA方向に延長した線上にA'B=√3ABとなる点A'を取り、辺ABをB方向に延長した線上にB'B=OBとなる点B'を取る。∠AOB=θと...

三角比面積不等式三角関数の合成直角三角形
2025/5/5

問題は2つあります。 (1) 三角形ABCにおいて、辺ABの中点をQ、QCの中点をRとし、ARの延長線が辺BCと交わる点をSとするとき、CS:SBとAR:RSを求めよ。 (2) 円に内接する四角形AB...

チェバの定理メネラウスの定理余弦定理ヘロンの公式円に内接する四角形面積
2025/5/5

点 $(3, 5)$ を $x$ 軸, $y$ 軸, 原点に関してそれぞれ対称移動した点の座標を求める問題です。

座標対称移動x軸y軸原点
2025/5/5

点 $(1, -1)$ を $x$ 軸方向に $2$, $y$ 軸方向に $-3$ だけ平行移動した点の座標を求めます。

座標平行移動点の移動
2025/5/5

点 $(-3, -4)$ を $x$ 軸方向に $2$, $y$ 軸方向に $-3$ だけ平行移動した点の座標を求めます。

座標平行移動点の移動
2025/5/5

点 $(-1, 2)$ をx軸方向に2、y軸方向に-3だけ平行移動した点の座標を求めます。

座標平行移動点の移動
2025/5/5

点(3, 5)をx軸方向に2、y軸方向に-3だけ平行移動した点の座標を求める。

座標平行移動点の移動
2025/5/5

座標平面上の3点A(1, 1), B(3, -1), C(7, 3)を通る円を$S_1$とし、その中心をDとする。 (1) 直線ABの傾き、直線BCの傾き、∠ABCを求め、$S_1$の中心Dの座標と半...

接線座標平面三角形の面積
2025/5/5