The problem asks us to find the interval where the function $f(x) = \cos(\frac{\pi}{4} - x)$ is monotonically increasing.

AnalysisTrigonometryMonotonicityIntervalsCalculus
2025/3/19

1. Problem Description

The problem asks us to find the interval where the function f(x)=cos(π4x)f(x) = \cos(\frac{\pi}{4} - x) is monotonically increasing.

2. Solution Steps

First, we can rewrite the cosine function using the identity cos(θ)=sin(π2θ)\cos(\theta) = \sin(\frac{\pi}{2} - \theta):
f(x)=cos(π4x)=sin(π2(π4x))=sin(π2π4+x)=sin(π4+x)f(x) = \cos(\frac{\pi}{4} - x) = \sin(\frac{\pi}{2} - (\frac{\pi}{4} - x)) = \sin(\frac{\pi}{2} - \frac{\pi}{4} + x) = \sin(\frac{\pi}{4} + x)
The sine function sin(x)\sin(x) is increasing in the interval [π2+2kπ,π2+2kπ][-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi], where kZk \in \mathbb{Z}.
Therefore, the function sin(π4+x)\sin(\frac{\pi}{4} + x) is increasing when:
π2+2kππ4+xπ2+2kπ-\frac{\pi}{2} + 2k\pi \le \frac{\pi}{4} + x \le \frac{\pi}{2} + 2k\pi
Subtracting π4\frac{\pi}{4} from all parts of the inequality, we get:
π2π4+2kπxπ2π4+2kπ-\frac{\pi}{2} - \frac{\pi}{4} + 2k\pi \le x \le \frac{\pi}{2} - \frac{\pi}{4} + 2k\pi
3π4+2kπxπ4+2kπ-\frac{3\pi}{4} + 2k\pi \le x \le \frac{\pi}{4} + 2k\pi
So, the increasing interval is [3π4+2kπ,π4+2kπ][-\frac{3\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi], where kZk \in \mathbb{Z}.
We can also use the fact that cos(x)\cos(x) is decreasing on [0,π][0, \pi] and increasing on [π,2π][\pi, 2\pi].
So f(x)=cos(π4x)f(x) = \cos(\frac{\pi}{4} - x) is increasing when π+2kππ4x2π+2kπ\pi + 2k\pi \le \frac{\pi}{4} - x \le 2\pi + 2k\pi, kZk \in \mathbb{Z}
Multiplying by -1, we have
2π2kπxπ4π2kπ-2\pi - 2k\pi \le x - \frac{\pi}{4} \le -\pi - 2k\pi
Add π4\frac{\pi}{4} to all parts
2π+π42kπxπ+π42kπ-2\pi + \frac{\pi}{4} - 2k\pi \le x \le -\pi + \frac{\pi}{4} - 2k\pi
7π42kπx3π42kπ-\frac{7\pi}{4} - 2k\pi \le x \le -\frac{3\pi}{4} - 2k\pi
Multiply by -1, we have
3π4+2kπx7π4+2kπ\frac{3\pi}{4} + 2k\pi \le x \le \frac{7\pi}{4} + 2k\pi, which is incorrect.
Then use the increasing interval for cosx\cos x:
(2k+1)ππ4x(2k+2)π(2k+1)\pi \le \frac{\pi}{4} - x \le (2k+2)\pi.
7π42kπx3π42kπ-\frac{7\pi}{4} - 2k\pi \le x \le -\frac{3\pi}{4} - 2k\pi
3π4+2kπx7π4+2kπ\frac{3\pi}{4} + 2k\pi \le -x \le \frac{7\pi}{4} + 2k\pi.
Therefore, the interval is [3π4+2kπ,7π4+2kπ][\frac{3\pi}{4} + 2k\pi, \frac{7\pi}{4} + 2k\pi].

3. Final Answer

The increasing interval is [3π4+2kπ,π4+2kπ][-\frac{3\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi], kZk \in \mathbb{Z}.
Final Answer: The final answer is [3π4+2kπ,π4+2kπ],kZ\boxed{[-\frac{3\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi], k \in Z}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1