We are given the function $f(x) = \frac{x}{x^2 - 1}$. We need to: 1. Determine the domain $D_f$ of the function $f$.

AnalysisFunction AnalysisDomainOdd FunctionMonotonicityVariation Table
2025/5/6

1. Problem Description

We are given the function f(x)=xx21f(x) = \frac{x}{x^2 - 1}. We need to:

1. Determine the domain $D_f$ of the function $f$.

2. Verify that $f$ is an odd function.

3. Show that for all distinct real numbers $a$ and $b$ in $D_f$, $T = \frac{f(a) - f(b)}{a - b} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}$.

4. Study the variations of $f$ on the intervals $[0, 1[$ and $]1, +\infty[$.

5. Deduce the variations of $f$ on the intervals $]-1, 0]$ and $]-\infty, -1[$.

6. Draw the variation table of $f$ on $D_f$.

2. Solution Steps

1. Determine the domain $D_f$ of $f(x) = \frac{x}{x^2 - 1}$.

The function is defined when the denominator is not zero.
x210    x21    x±1x^2 - 1 \neq 0 \implies x^2 \neq 1 \implies x \neq \pm 1.
Therefore, Df=R{1,1}=],1[]1,1[]1,+[D_f = \mathbb{R} \setminus \{-1, 1\} = ]-\infty, -1[ \cup ]-1, 1[ \cup ]1, +\infty[.

2. Verify that $f$ is an odd function.

A function is odd if f(x)=f(x)f(-x) = -f(x) for all xx in its domain.
f(x)=x(x)21=xx21=xx21=f(x)f(-x) = \frac{-x}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = -\frac{x}{x^2 - 1} = -f(x).
Thus, ff is an odd function.

3. Show that $T = \frac{f(a) - f(b)}{a - b} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}$.

f(a)=aa21f(a) = \frac{a}{a^2 - 1} and f(b)=bb21f(b) = \frac{b}{b^2 - 1}.
f(a)f(b)=aa21bb21=a(b21)b(a21)(a21)(b21)=ab2aba2+b(a21)(b21)=ab2ba2a+b(a21)(b21)=ab(ba)+(ba)(a21)(b21)=(ba)(ab+1)(a21)(b21)=(ab)(ab+1)(a21)(b21)f(a) - f(b) = \frac{a}{a^2 - 1} - \frac{b}{b^2 - 1} = \frac{a(b^2 - 1) - b(a^2 - 1)}{(a^2 - 1)(b^2 - 1)} = \frac{ab^2 - a - ba^2 + b}{(a^2 - 1)(b^2 - 1)} = \frac{ab^2 - ba^2 - a + b}{(a^2 - 1)(b^2 - 1)} = \frac{ab(b - a) + (b - a)}{(a^2 - 1)(b^2 - 1)} = \frac{(b - a)(ab + 1)}{(a^2 - 1)(b^2 - 1)} = -\frac{(a - b)(ab + 1)}{(a^2 - 1)(b^2 - 1)}.
Thus, T=f(a)f(b)ab=(ab)(ab+1)(a21)(b21)ab=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = \frac{-\frac{(a - b)(ab + 1)}{(a^2 - 1)(b^2 - 1)}}{a - b} = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}.

4. Study the variations of $f$ on $[0, 1[$ and $]1, +\infty[$.

Let a,b[0,1[a, b \in [0, 1[ such that a<ba < b. Then ab+1>0ab+1 > 0. Also, a21<0a^2 - 1 < 0 and b21<0b^2 - 1 < 0, so (a21)(b21)>0(a^2 - 1)(b^2 - 1) > 0. Thus, T=ab+1(a21)(b21)<0T = -\frac{ab+1}{(a^2-1)(b^2-1)} < 0. Since a<ba<b and T<0T<0, f(a)>f(b)f(a) > f(b). Therefore, ff is strictly decreasing on [0,1[[0, 1[.
Let a,b]1,+[a, b \in ]1, +\infty[ such that a<ba < b. Then ab+1>0ab+1 > 0. Also, a21>0a^2 - 1 > 0 and b21>0b^2 - 1 > 0, so (a21)(b21)>0(a^2 - 1)(b^2 - 1) > 0. Thus, T=ab+1(a21)(b21)<0T = -\frac{ab+1}{(a^2-1)(b^2-1)} < 0. Since a<ba<b and T<0T<0, f(a)>f(b)f(a) > f(b). Therefore, ff is strictly decreasing on ]1,+[]1, +\infty[.

5. Deduce the variations of $f$ on $]-1, 0]$ and $]-\infty, -1[$.

Since ff is an odd function, f(x)=f(x)f(-x) = -f(x).
If x[0,1[x \in [0, 1[, then x]1,0]-x \in ]-1, 0]. ff is decreasing on [0,1[[0, 1[ means that for 0a<b<10 \le a < b < 1, we have f(a)>f(b)f(a) > f(b). Thus, f(a)<f(b)-f(a) < -f(b). Since ff is odd, f(a)<f(b)f(-a) < f(-b). But b<a-b < -a, so for b<a0-b < -a \le 0, we have f(b)>f(a)f(-b) > f(-a). This means ff is decreasing on ]1,0]]-1, 0].
If x]1,[x \in ]1, \infty[, then x],1[-x \in ]-\infty, -1[. ff is decreasing on ]1,[]1, \infty[ means that for 1<a<b1 < a < b, we have f(a)>f(b)f(a) > f(b). Thus, f(a)<f(b)-f(a) < -f(b). Since ff is odd, f(a)<f(b)f(-a) < f(-b). But b<a-b < -a, so for <b<a<1-\infty < -b < -a < -1, we have f(b)>f(a)f(-b) > f(-a). This means ff is decreasing on ],1[]-\infty, -1[.

6. Draw the variation table of $f$ on $D_f$.

| x | -inf | -1 | | 0 | | 1 | +inf |
| -------- | ---- | -- | ------- | --- | ----- | -- | ---- |
| f'(x) | | | - | | - | | |
| f(x) | 0 | || | 0 | | || | 0 |
On ],1[]-\infty, -1[, the function is decreasing from 0 to -\infty.
On ]1,0]]-1, 0], the function is decreasing from ++\infty to

0. On $[0, 1[$, the function is decreasing from 0 to $-\infty$.

On ]1,+[]1, +\infty[, the function is decreasing from ++\infty to
0.

3. Final Answer

1. $D_f = ]-\infty, -1[ \cup ]-1, 1[ \cup ]1, +\infty[$

2. $f$ is an odd function.

3. $T = -\frac{ab + 1}{(a^2 - 1)(b^2 - 1)}$

4. $f$ is strictly decreasing on $[0, 1[$ and $]1, +\infty[$.

5. $f$ is strictly decreasing on $]-1, 0]$ and $]-\infty, -1[$.

6. Variation table:

| x | -inf | -1 | | 0 | | 1 | +inf |
| -------- | ---- | -- | ------- | --- | ----- | -- | ---- |
| f'(x) | | | - | | - | | |
| f(x) | 0 | || | 0 | | || | 0 |

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7