We are asked to find the value of the expression $\frac{6^{1/2} \cdot 9^{1/4}}{216^{1/4}}$.AlgebraExponentsRadicalsSimplification2025/3/191. Problem DescriptionWe are asked to find the value of the expression 61/2⋅91/42161/4\frac{6^{1/2} \cdot 9^{1/4}}{216^{1/4}}2161/461/2⋅91/4.2. Solution StepsWe simplify the expression:61/2⋅91/42161/4=61/2⋅(32)1/4(63)1/4=61/2⋅32/463/4=61/2⋅31/263/4=(6⋅3)1/263/4=181/263/4=(2⋅32)1/2(2⋅3)3/4=21/2⋅32/223/4⋅33/4=21/2⋅323/4⋅33/4=212−34⋅31−34=224−34⋅344−34=2−1/4⋅31/4=31/421/4=(32)1/4\frac{6^{1/2} \cdot 9^{1/4}}{216^{1/4}} = \frac{6^{1/2} \cdot (3^2)^{1/4}}{(6^3)^{1/4}} = \frac{6^{1/2} \cdot 3^{2/4}}{6^{3/4}} = \frac{6^{1/2} \cdot 3^{1/2}}{6^{3/4}} = \frac{(6 \cdot 3)^{1/2}}{6^{3/4}} = \frac{18^{1/2}}{6^{3/4}} = \frac{(2 \cdot 3^2)^{1/2}}{(2 \cdot 3)^{3/4}} = \frac{2^{1/2} \cdot 3^{2/2}}{2^{3/4} \cdot 3^{3/4}} = \frac{2^{1/2} \cdot 3}{2^{3/4} \cdot 3^{3/4}} = 2^{\frac{1}{2} - \frac{3}{4}} \cdot 3^{1 - \frac{3}{4}} = 2^{\frac{2}{4} - \frac{3}{4}} \cdot 3^{\frac{4}{4} - \frac{3}{4}} = 2^{-1/4} \cdot 3^{1/4} = \frac{3^{1/4}}{2^{1/4}} = (\frac{3}{2})^{1/4}2161/461/2⋅91/4=(63)1/461/2⋅(32)1/4=63/461/2⋅32/4=63/461/2⋅31/2=63/4(6⋅3)1/2=63/4181/2=(2⋅3)3/4(2⋅32)1/2=23/4⋅33/421/2⋅32/2=23/4⋅33/421/2⋅3=221−43⋅31−43=242−43⋅344−43=2−1/4⋅31/4=21/431/4=(23)1/43. Final Answer(c) (32)1/4(\frac{3}{2})^{1/4}(23)1/4