We need to evaluate the definite integral $J = \int_{0}^{1} x^4 (1 - x^2)^{3/2} dx$.

AnalysisDefinite IntegralTrigonometric SubstitutionIntegration TechniquesReduction Formula
2025/5/6

1. Problem Description

We need to evaluate the definite integral J=01x4(1x2)3/2dxJ = \int_{0}^{1} x^4 (1 - x^2)^{3/2} dx.

2. Solution Steps

We will use the trigonometric substitution x=sin(θ)x = \sin(\theta). Then dx=cos(θ)dθdx = \cos(\theta) d\theta.
When x=0x=0, θ=arcsin(0)=0\theta = \arcsin(0) = 0. When x=1x=1, θ=arcsin(1)=π/2\theta = \arcsin(1) = \pi/2.
The integral becomes:
J=0π/2sin4(θ)(1sin2(θ))3/2cos(θ)dθ=0π/2sin4(θ)(cos2(θ))3/2cos(θ)dθ=0π/2sin4(θ)cos3(θ)cos(θ)dθ=0π/2sin4(θ)cos4(θ)dθJ = \int_{0}^{\pi/2} \sin^4(\theta) (1 - \sin^2(\theta))^{3/2} \cos(\theta) d\theta = \int_{0}^{\pi/2} \sin^4(\theta) (\cos^2(\theta))^{3/2} \cos(\theta) d\theta = \int_{0}^{\pi/2} \sin^4(\theta) \cos^3(\theta) \cos(\theta) d\theta = \int_{0}^{\pi/2} \sin^4(\theta) \cos^4(\theta) d\theta.
We can rewrite the integral as:
J=0π/2(sin(θ)cos(θ))4dθ=0π/2(12sin(2θ))4dθ=1160π/2sin4(2θ)dθJ = \int_{0}^{\pi/2} (\sin(\theta) \cos(\theta))^4 d\theta = \int_{0}^{\pi/2} (\frac{1}{2} \sin(2\theta))^4 d\theta = \frac{1}{16} \int_{0}^{\pi/2} \sin^4(2\theta) d\theta.
Let u=2θu = 2\theta, then du=2dθdu = 2 d\theta, so dθ=12dud\theta = \frac{1}{2} du.
When θ=0\theta = 0, u=0u = 0. When θ=π/2\theta = \pi/2, u=πu = \pi.
The integral becomes:
J=1160πsin4(u)12du=1320πsin4(u)duJ = \frac{1}{16} \int_{0}^{\pi} \sin^4(u) \frac{1}{2} du = \frac{1}{32} \int_{0}^{\pi} \sin^4(u) du.
Since sin4(u)\sin^4(u) is symmetric about u=π/2u = \pi/2, we have
0πsin4(u)du=20π/2sin4(u)du\int_{0}^{\pi} \sin^4(u) du = 2 \int_{0}^{\pi/2} \sin^4(u) du.
So, J=13220π/2sin4(u)du=1160π/2sin4(u)duJ = \frac{1}{32} \cdot 2 \int_{0}^{\pi/2} \sin^4(u) du = \frac{1}{16} \int_{0}^{\pi/2} \sin^4(u) du.
We use the reduction formula for 0π/2sinn(x)dx\int_{0}^{\pi/2} \sin^n(x) dx:
0π/2sinn(x)dx=n1n0π/2sinn2(x)dx\int_{0}^{\pi/2} \sin^n(x) dx = \frac{n-1}{n} \int_{0}^{\pi/2} \sin^{n-2}(x) dx.
Thus, 0π/2sin4(u)du=4140π/2sin2(u)du=340π/2sin2(u)du\int_{0}^{\pi/2} \sin^4(u) du = \frac{4-1}{4} \int_{0}^{\pi/2} \sin^2(u) du = \frac{3}{4} \int_{0}^{\pi/2} \sin^2(u) du.
Now, 0π/2sin2(u)du=2120π/2sin0(u)du=120π/21du=12[θ]0π/2=12π2=π4\int_{0}^{\pi/2} \sin^2(u) du = \frac{2-1}{2} \int_{0}^{\pi/2} \sin^0(u) du = \frac{1}{2} \int_{0}^{\pi/2} 1 du = \frac{1}{2} [\theta]_0^{\pi/2} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}.
So, 0π/2sin4(u)du=34π4=3π16\int_{0}^{\pi/2} \sin^4(u) du = \frac{3}{4} \cdot \frac{\pi}{4} = \frac{3\pi}{16}.
Therefore, J=1163π16=3π256J = \frac{1}{16} \cdot \frac{3\pi}{16} = \frac{3\pi}{256}.

3. Final Answer

3π256\frac{3\pi}{256}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7