We need to evaluate the definite integral $I = \int_{-1}^{1} \frac{x}{1 + |x|} \, dx$.

AnalysisDefinite IntegralIntegrationAbsolute ValueCalculus
2025/5/6

1. Problem Description

We need to evaluate the definite integral I=11x1+xdxI = \int_{-1}^{1} \frac{x}{1 + |x|} \, dx.

2. Solution Steps

Since the integral is from 1-1 to 11, we can split the integral into two parts based on the sign of xx.
I=10x1+xdx+01x1+xdxI = \int_{-1}^{0} \frac{x}{1 + |x|} \, dx + \int_{0}^{1} \frac{x}{1 + |x|} \, dx
When x<0x < 0, x=x|x| = -x.
When x>0x > 0, x=x|x| = x.
So,
I=10x1xdx+01x1+xdxI = \int_{-1}^{0} \frac{x}{1 - x} \, dx + \int_{0}^{1} \frac{x}{1 + x} \, dx
Let's consider the first integral, I1=10x1xdxI_1 = \int_{-1}^{0} \frac{x}{1 - x} \, dx. We can rewrite the integrand as:
x1x=(1x)+11x=1+11x\frac{x}{1 - x} = \frac{-(1-x)+1}{1-x} = -1 + \frac{1}{1 - x}.
Then I1=10(1+11x)dx=[xln1x]10=(0ln1)(1ln1(1))=0(1ln2)=1+ln2I_1 = \int_{-1}^{0} \left(-1 + \frac{1}{1 - x}\right) \, dx = \left[-x - \ln|1 - x|\right]_{-1}^{0} = (0 - \ln|1|) - (1 - \ln|1 - (-1)|) = 0 - (1 - \ln 2) = -1 + \ln 2.
Now consider the second integral, I2=01x1+xdxI_2 = \int_{0}^{1} \frac{x}{1 + x} \, dx. We can rewrite the integrand as:
x1+x=(1+x)11+x=111+x\frac{x}{1 + x} = \frac{(1+x)-1}{1+x} = 1 - \frac{1}{1 + x}.
Then I2=01(111+x)dx=[xln1+x]01=(1ln1+1)(0ln1+0)=1ln20=1ln2I_2 = \int_{0}^{1} \left(1 - \frac{1}{1 + x}\right) \, dx = \left[x - \ln|1 + x|\right]_{0}^{1} = (1 - \ln|1 + 1|) - (0 - \ln|1 + 0|) = 1 - \ln 2 - 0 = 1 - \ln 2.
So, I=I1+I2=(1+ln2)+(1ln2)=0I = I_1 + I_2 = (-1 + \ln 2) + (1 - \ln 2) = 0.

3. Final Answer

0

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7