The problem is divided into two exercises. Exercise 3 is about the function $f(x) = \frac{x}{x^2 - 1}$. We need to: 1) Determine the domain of definition $D_f$ of $f$. 2) Verify that $f$ is an odd function. 3) Show that for all distinct real numbers $a$ and $b$ in $D_f$, $T = \frac{f(a) - f(b)}{a - b} = -\frac{ab+1}{(a^2 - 1)(b^2 - 1)}$. 4) Study the variations of $f$ on $[0, 1[$ and $]1, +\infty[$. 5) Deduce the variations of $f$ on $]-1, 0]$ and $]-\infty, -1[$. 6) Draw the variation table of $f$ on $D_f$. Exercise 2 asks us to solve some trigonometric equations and inequalities. 1) Solve the following equations in the given interval: - $cos(x) = \frac{1}{2}, I = R$ - $sin(2x - \frac{\pi}{3}) = sin(\frac{\pi}{4} - x), I = [0, 2\pi]$ - $cos(2x) = \frac{\sqrt{3}}{2}, I = ]-\pi, \pi]$ 2) Solve the following inequalities in the given interval: - $sin(x) \geq \frac{1}{2}, I = ]-\pi, \pi]$ - $cos(x) < \frac{1}{2}, I = [0, 2\pi]$

AnalysisFunctionsDomainOdd FunctionsDerivativesTrigonometryTrigonometric EquationsTrigonometric InequalitiesIntervalsVariation
2025/5/7

1. Problem Description

The problem is divided into two exercises. Exercise 3 is about the function f(x)=xx21f(x) = \frac{x}{x^2 - 1}. We need to:
1) Determine the domain of definition DfD_f of ff.
2) Verify that ff is an odd function.
3) Show that for all distinct real numbers aa and bb in DfD_f, T=f(a)f(b)ab=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = -\frac{ab+1}{(a^2 - 1)(b^2 - 1)}.
4) Study the variations of ff on [0,1[[0, 1[ and ]1,+[]1, +\infty[.
5) Deduce the variations of ff on ]1,0]]-1, 0] and ],1[]-\infty, -1[.
6) Draw the variation table of ff on DfD_f.
Exercise 2 asks us to solve some trigonometric equations and inequalities.
1) Solve the following equations in the given interval:
- cos(x)=12,I=Rcos(x) = \frac{1}{2}, I = R
- sin(2xπ3)=sin(π4x),I=[0,2π]sin(2x - \frac{\pi}{3}) = sin(\frac{\pi}{4} - x), I = [0, 2\pi]
- cos(2x)=32,I=]π,π]cos(2x) = \frac{\sqrt{3}}{2}, I = ]-\pi, \pi]
2) Solve the following inequalities in the given interval:
- sin(x)12,I=]π,π]sin(x) \geq \frac{1}{2}, I = ]-\pi, \pi]
- cos(x)<12,I=[0,2π]cos(x) < \frac{1}{2}, I = [0, 2\pi]

2. Solution Steps

Exercise 3:
1) Domain of definition:
f(x)=xx21f(x) = \frac{x}{x^2 - 1}. f(x)f(x) is defined when the denominator is not zero.
x210    x21    x±1x^2 - 1 \neq 0 \implies x^2 \neq 1 \implies x \neq \pm 1.
So Df=R{1,1}=],1[]1,1[]1,+[D_f = R \setminus \{-1, 1\} = ]-\infty, -1[ \cup ]-1, 1[ \cup ]1, +\infty[.
2) Odd function:
A function ff is odd if f(x)=f(x)f(-x) = -f(x).
f(x)=x(x)21=xx21=xx21=f(x)f(-x) = \frac{-x}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = - \frac{x}{x^2 - 1} = -f(x).
Thus, f(x)f(x) is an odd function.
3) Showing the expression for T:
f(a)=aa21f(a) = \frac{a}{a^2 - 1} and f(b)=bb21f(b) = \frac{b}{b^2 - 1}.
f(a)f(b)=aa21bb21=a(b21)b(a21)(a21)(b21)=ab2aba2+b(a21)(b21)=ab2ba2a+b(a21)(b21)=ab(ba)+(ba)(a21)(b21)=(ba)(ab+1)(a21)(b21)f(a) - f(b) = \frac{a}{a^2 - 1} - \frac{b}{b^2 - 1} = \frac{a(b^2 - 1) - b(a^2 - 1)}{(a^2 - 1)(b^2 - 1)} = \frac{ab^2 - a - ba^2 + b}{(a^2 - 1)(b^2 - 1)} = \frac{ab^2 - ba^2 - a + b}{(a^2 - 1)(b^2 - 1)} = \frac{ab(b - a) + (b - a)}{(a^2 - 1)(b^2 - 1)} = \frac{(b - a)(ab + 1)}{(a^2 - 1)(b^2 - 1)}.
T=f(a)f(b)ab=(ba)(ab+1)(ab)(a21)(b21)=(ab)(ab+1)(ab)(a21)(b21)=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = \frac{(b - a)(ab + 1)}{(a - b)(a^2 - 1)(b^2 - 1)} = \frac{-(a - b)(ab + 1)}{(a - b)(a^2 - 1)(b^2 - 1)} = - \frac{ab + 1}{(a^2 - 1)(b^2 - 1)}.
4) Variations of f on [0,1[[0, 1[ and ]1,+[]1, +\infty[:
Let x[0,1[x \in [0, 1[ and x]1,+[x \in ]1, +\infty[.
f(x)=(x21)x(2x)(x21)2=x212x2(x21)2=x21(x21)2=x2+1(x21)2f'(x) = \frac{(x^2 - 1) - x(2x)}{(x^2 - 1)^2} = \frac{x^2 - 1 - 2x^2}{(x^2 - 1)^2} = \frac{-x^2 - 1}{(x^2 - 1)^2} = - \frac{x^2 + 1}{(x^2 - 1)^2}.
Since x2+1>0x^2 + 1 > 0 and (x21)2>0(x^2 - 1)^2 > 0, we have f(x)<0f'(x) < 0 for all xDfx \in D_f.
Therefore, ff is strictly decreasing on [0,1[[0, 1[ and ]1,+[]1, +\infty[.
5) Variations of f on ]1,0]]-1, 0] and ],1[]-\infty, -1[:
Since f is an odd function, if f is strictly decreasing on ]1,+[]1, +\infty[, then it is strictly decreasing on ],1[]-\infty, -1[. If f is strictly decreasing on [0,1[[0, 1[, then it is strictly decreasing on ]1,0]]-1, 0].
Therefore, ff is strictly decreasing on ]1,0]]-1, 0] and ],1[]-\infty, -1[.
6) Variation Table of f on DfD_f:
Since f is strictly decreasing on ],1[]-\infty, -1[, ]1,0]]-1, 0], [0,1[[0, 1[ and ]1,+[]1, +\infty[, the variation table is as follows.
x | -inf | -1 | -1 | 0 | 1 | 1 | +inf
---|-------|--------|--------|-------|-------|-------|------
f'(x)| - | - | - | - | - | - | -
f(x) | 0 | -inf | +inf | 0 | -inf | +inf | 0
Exercise 2:
1)
- cos(x)=12,I=Rcos(x) = \frac{1}{2}, I = R
x=±π3+2kπx = \pm \frac{\pi}{3} + 2k\pi, where kZk \in Z.
- sin(2xπ3)=sin(π4x),I=[0,2π]sin(2x - \frac{\pi}{3}) = sin(\frac{\pi}{4} - x), I = [0, 2\pi]
2xπ3=π4x+2kπ2x - \frac{\pi}{3} = \frac{\pi}{4} - x + 2k\pi or 2xπ3=π(π4x)+2kπ2x - \frac{\pi}{3} = \pi - (\frac{\pi}{4} - x) + 2k\pi.
3x=π4+π3+2kπ=7π12+2kπ    x=7π36+2kπ33x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{7\pi}{12} + 2k\pi \implies x = \frac{7\pi}{36} + \frac{2k\pi}{3}.
x=7π36,7π36+2π3=31π36,7π36+4π3=55π36x = \frac{7\pi}{36}, \frac{7\pi}{36} + \frac{2\pi}{3} = \frac{31\pi}{36}, \frac{7\pi}{36} + \frac{4\pi}{3} = \frac{55\pi}{36}.
2xπ3=ππ4+x+2kπ2x - \frac{\pi}{3} = \pi - \frac{\pi}{4} + x + 2k\pi
x=3π4+π3+2kπ=13π12+2kπx = \frac{3\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{13\pi}{12} + 2k\pi.
x=13π12,13π12>2π=24π12x = \frac{13\pi}{12}, \frac{13\pi}{12} > 2\pi = \frac{24\pi}{12} so we don't need more values for k >

0. The solutions are: $x = \frac{7\pi}{36}, \frac{31\pi}{36}, \frac{55\pi}{36}, \frac{13\pi}{12}$.

- cos(2x)=32,I=]π,π]cos(2x) = \frac{\sqrt{3}}{2}, I = ]-\pi, \pi]
2x=±π6+2kπ    x=±π12+kπ2x = \pm \frac{\pi}{6} + 2k\pi \implies x = \pm \frac{\pi}{12} + k\pi.
For k=0k = 0, x=±π12x = \pm \frac{\pi}{12}.
For k=1k = 1, x=π12+π=13π12x = \frac{\pi}{12} + \pi = \frac{13\pi}{12} and x=π12+π=11π12x = - \frac{\pi}{12} + \pi = \frac{11\pi}{12}.
For k=1k = -1, x=π12π=11π12x = \frac{\pi}{12} - \pi = - \frac{11\pi}{12} and x=π12π=13π12x = - \frac{\pi}{12} - \pi = - \frac{13\pi}{12}.
Since x]π,π]x \in ]-\pi, \pi], the solutions are: x=11π12,π12,π12,11π12x = - \frac{11\pi}{12}, - \frac{\pi}{12}, \frac{\pi}{12}, \frac{11\pi}{12}.
2)
- sin(x)12,I=]π,π]sin(x) \geq \frac{1}{2}, I = ]-\pi, \pi]
x[π6,5π6]x \in [\frac{\pi}{6}, \frac{5\pi}{6}].
- cos(x)<12,I=[0,2π]cos(x) < \frac{1}{2}, I = [0, 2\pi]
x(π3,5π3)x \in (\frac{\pi}{3}, \frac{5\pi}{3}).

3. Final Answer

Exercise 3:
1) Df=R{1,1}=],1[]1,1[]1,+[D_f = R \setminus \{-1, 1\} = ]-\infty, -1[ \cup ]-1, 1[ \cup ]1, +\infty[.
2) f(x)f(x) is an odd function.
3) T=ab+1(a21)(b21)T = - \frac{ab + 1}{(a^2 - 1)(b^2 - 1)}.
4) ff is strictly decreasing on [0,1[[0, 1[ and ]1,+[]1, +\infty[.
5) ff is strictly decreasing on ]1,0]]-1, 0] and ],1[]-\infty, -1[.
Exercise 2:
1)
- x=±π3+2kπx = \pm \frac{\pi}{3} + 2k\pi, where kZk \in Z.
- x=7π36,31π36,55π36,13π12x = \frac{7\pi}{36}, \frac{31\pi}{36}, \frac{55\pi}{36}, \frac{13\pi}{12}.
- x=11π12,π12,π12,11π12x = - \frac{11\pi}{12}, - \frac{\pi}{12}, \frac{\pi}{12}, \frac{11\pi}{12}.
2)
- x[π6,5π6]x \in [\frac{\pi}{6}, \frac{5\pi}{6}].
- x(π3,5π3)x \in (\frac{\pi}{3}, \frac{5\pi}{3}).

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7