与えられた式 $(x^3)^3$ を計算し、3を掛けて簡略化します。つまり、$3(x^3)^3$を計算します。

代数学指数法則式の簡略化べき乗
2025/5/8

1. 問題の内容

与えられた式 (x3)3(x^3)^3 を計算し、3を掛けて簡略化します。つまり、3(x3)33(x^3)^3を計算します。

2. 解き方の手順

まず、指数のべき乗の法則を適用します。これは、(am)n=amn(a^m)^n = a^{m \cdot n} となります。
したがって、(x3)3=x33=x9(x^3)^3 = x^{3 \cdot 3} = x^9 となります。
次に、この結果に3を掛けます。
3(x3)3=3x93(x^3)^3 = 3x^9

3. 最終的な答え

3x93x^9

「代数学」の関連問題

与えられた5つの行列それぞれについて、行列式を余因子展開を用いて計算します。

行列式余因子展開線形代数
2025/6/5

与えられた5つの行列の行列式を余因子展開を使って求めます。

行列行列式余因子展開
2025/6/5

与えられた5つの行列それぞれの行列式を、余因子展開を用いて計算します。

行列式余因子展開線形代数
2025/6/5

与えられた行列AとBの指定された余因子を計算する問題です。 行列 A = $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$, 行列 B = $\begin{...

行列余因子行列式
2025/6/5

恒等式 $3k(k+1) = k(k+1)(k+2) - (k-1)k(k+1)$ を用いて、公式 $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{1}{6}n(n+1...

数列シグマ記号数学的帰納法等式証明
2025/6/5

与えられた3つの連立方程式を掃き出し法を用いて解く問題です。 (1) $107x + 241y = 669$と$113x + 199y = 651$を解く。 (2) $x + y + z = 1$, ...

連立方程式線形代数掃き出し法
2025/6/5

与えられた連立一次方程式を解き、$x$と$y$の値を求める。連立方程式は以下の通り。 $107x + 241y = 669$ $113x + 199y = 651$

連立一次方程式加減法方程式の解法
2025/6/5

自然数の列をある規則に従って群に分ける。第 $n$ 群には $(2n-1)$ 個の数が入る。 (1) 第 $n$ 群の最初の自然数を $n$ の式で表せ。 (2) 第 $n$ 群に入るすべての自然数の...

数列等差数列級数数学的帰納法
2025/6/5

画像に書かれている数式を解釈し、簡潔に記述します。画像からは、 $x^{\frac{1}{n}}$ が読み取れます。これは、$x$ の $\frac{1}{n}$ 乗、つまり $x$ の $n$ 乗根...

累乗根指数
2025/6/5

ベクトル $\mathbf{x}$ がベクトル $\mathbf{a}_1$ と $\mathbf{a}_2$ の線形結合で表せないことを示す。

線形代数ベクトル線形結合線形独立連立方程式
2025/6/5