The problem consists of three parts: (i) Differentiate $y = 2x^3 \sin(2x)$. (ii) Simplify $(\frac{8}{27})^{-2/3}$. (iii) Rationalize the denominator of $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$.

AnalysisDifferentiationExponentsRadicalsRationalizationProduct Rule
2025/5/8

1. Problem Description

The problem consists of three parts:
(i) Differentiate y=2x3sin(2x)y = 2x^3 \sin(2x).
(ii) Simplify (827)2/3(\frac{8}{27})^{-2/3}.
(iii) Rationalize the denominator of 5+353\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}.

2. Solution Steps

(i) Differentiate y=2x3sin(2x)y = 2x^3 \sin(2x).
We use the product rule: (uv)=uv+uv(uv)' = u'v + uv'. Let u=2x3u = 2x^3 and v=sin(2x)v = \sin(2x).
Then u=6x2u' = 6x^2 and v=2cos(2x)v' = 2\cos(2x).
So, y=(2x3)sin(2x)+2x3(sin(2x))=6x2sin(2x)+2x3(2cos(2x))=6x2sin(2x)+4x3cos(2x)y' = (2x^3)' \sin(2x) + 2x^3 (\sin(2x))' = 6x^2 \sin(2x) + 2x^3 (2\cos(2x)) = 6x^2 \sin(2x) + 4x^3 \cos(2x).
(ii) Simplify (827)2/3(\frac{8}{27})^{-2/3}.
(827)2/3=(278)2/3=((278)1/3)2=(32)2=94(\frac{8}{27})^{-2/3} = (\frac{27}{8})^{2/3} = ((\frac{27}{8})^{1/3})^2 = (\frac{3}{2})^2 = \frac{9}{4}.
(iii) Rationalize the denominator of 5+353\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}.
Multiply the numerator and denominator by the conjugate of the denominator, which is 5+3\sqrt{5} + \sqrt{3}:
5+3535+35+3=(5+3)2(5)2(3)2=5+215+353=8+2152=4+15\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \cdot \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2} = \frac{5 + 2\sqrt{15} + 3}{5 - 3} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15}.

3. Final Answer

(i) 6x2sin(2x)+4x3cos(2x)6x^2 \sin(2x) + 4x^3 \cos(2x)
(ii) 94\frac{9}{4}
(iii) 4+154 + \sqrt{15}

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

CalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \s...

IntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$...

Area between curvesDefinite integralQuadratic equations
2025/5/10

The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, d...

Definite IntegralsIntegrationProperties of Integrals
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10