The problem has three parts: (a) Given the set $A = [-7, 8) \cup [11, \infty)$, find the complement of $A$, denoted as $A'$. (b) Given the set $A = [-7, 8) \cup [11, \infty)$ and $B = [0, 20]$, find the intersection of $A$ and $B$, denoted as $A \cap B$. (c) Evaluate the integral $\int 7xe^{2x} dx$.

AnalysisSet TheoryCalculusIntegration by PartsDefinite Integral
2025/5/8

1. Problem Description

The problem has three parts:
(a) Given the set A=[7,8)[11,)A = [-7, 8) \cup [11, \infty), find the complement of AA, denoted as AA'.
(b) Given the set A=[7,8)[11,)A = [-7, 8) \cup [11, \infty) and B=[0,20]B = [0, 20], find the intersection of AA and BB, denoted as ABA \cap B.
(c) Evaluate the integral 7xe2xdx\int 7xe^{2x} dx.

2. Solution Steps

(a) Finding AA':
The universal set is the set of real numbers, R=(,)\mathbb{R} = (-\infty, \infty). The complement of AA is the set of all elements in the universal set that are not in AA.
A=[7,8)[11,)A = [-7, 8) \cup [11, \infty).
A=(,7)[8,11)A' = (-\infty, -7) \cup [8, 11).
(b) Finding ABA \cap B:
A=[7,8)[11,)A = [-7, 8) \cup [11, \infty) and B=[0,20]B = [0, 20].
AB=([7,8)[11,))[0,20]=([7,8)[0,20])([11,)[0,20])A \cap B = ([-7, 8) \cup [11, \infty)) \cap [0, 20] = ([-7, 8) \cap [0, 20]) \cup ([11, \infty) \cap [0, 20]).
[7,8)[0,20]=[0,8)[-7, 8) \cap [0, 20] = [0, 8).
[11,)[0,20]=[11,20][11, \infty) \cap [0, 20] = [11, 20].
Therefore, AB=[0,8)[11,20]A \cap B = [0, 8) \cup [11, 20].
(c) Evaluating the integral 7xe2xdx\int 7xe^{2x} dx:
We will use integration by parts.
udv=uvvdu\int u dv = uv - \int v du
Let u=xu = x and dv=7e2xdxdv = 7e^{2x} dx. Then du=dxdu = dx and v=7e2xdx=72e2xv = \int 7e^{2x} dx = \frac{7}{2}e^{2x}.
7xe2xdx=x(72e2x)72e2xdx=72xe2x72e2xdx=72xe2x72(12e2x)+C=72xe2x74e2x+C\int 7xe^{2x} dx = x(\frac{7}{2}e^{2x}) - \int \frac{7}{2}e^{2x} dx = \frac{7}{2}xe^{2x} - \frac{7}{2} \int e^{2x} dx = \frac{7}{2}xe^{2x} - \frac{7}{2} (\frac{1}{2}e^{2x}) + C = \frac{7}{2}xe^{2x} - \frac{7}{4}e^{2x} + C.

3. Final Answer

(a) A=(,7)[8,11)A' = (-\infty, -7) \cup [8, 11)
(b) AB=[0,8)[11,20]A \cap B = [0, 8) \cup [11, 20]
(c) 7xe2xdx=72xe2x74e2x+C\int 7xe^{2x} dx = \frac{7}{2}xe^{2x} - \frac{7}{4}e^{2x} + C

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7