We need to find $\frac{dw}{dt}$ for each of the given functions using the chain rule, and express the final answer in terms of $t$.

AnalysisChain RulePartial DerivativesMultivariable Calculus
2025/5/9

1. Problem Description

We need to find dwdt\frac{dw}{dt} for each of the given functions using the chain rule, and express the final answer in terms of tt.

2. Solution Steps

Problem 1: w=x2y3w = x^2y^3, x=t3x = t^3, y=t2y = t^2
We use the chain rule:
dwdt=wxdxdt+wydydt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}
First, we find the partial derivatives:
wx=2xy3\frac{\partial w}{\partial x} = 2xy^3
wy=3x2y2\frac{\partial w}{\partial y} = 3x^2y^2
Next, we find the derivatives of xx and yy with respect to tt:
dxdt=3t2\frac{dx}{dt} = 3t^2
dydt=2t\frac{dy}{dt} = 2t
Now, we substitute these into the chain rule formula:
dwdt=(2xy3)(3t2)+(3x2y2)(2t)\frac{dw}{dt} = (2xy^3)(3t^2) + (3x^2y^2)(2t)
Substitute x=t3x = t^3 and y=t2y = t^2:
dwdt=(2(t3)(t2)3)(3t2)+(3(t3)2(t2)2)(2t)\frac{dw}{dt} = (2(t^3)(t^2)^3)(3t^2) + (3(t^3)^2(t^2)^2)(2t)
dwdt=(2t3t6)(3t2)+(3t6t4)(2t)\frac{dw}{dt} = (2t^3t^6)(3t^2) + (3t^6t^4)(2t)
dwdt=(2t9)(3t2)+(3t10)(2t)\frac{dw}{dt} = (2t^9)(3t^2) + (3t^{10})(2t)
dwdt=6t11+6t11\frac{dw}{dt} = 6t^{11} + 6t^{11}
dwdt=12t11\frac{dw}{dt} = 12t^{11}
Problem 2: w=x2yy2xw = x^2y - y^2x, x=costx = \cos t, y=sinty = \sin t
We use the chain rule:
dwdt=wxdxdt+wydydt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}
First, we find the partial derivatives:
wx=2xyy2\frac{\partial w}{\partial x} = 2xy - y^2
wy=x22yx\frac{\partial w}{\partial y} = x^2 - 2yx
Next, we find the derivatives of xx and yy with respect to tt:
dxdt=sint\frac{dx}{dt} = -\sin t
dydt=cost\frac{dy}{dt} = \cos t
Now, we substitute these into the chain rule formula:
dwdt=(2xyy2)(sint)+(x22yx)(cost)\frac{dw}{dt} = (2xy - y^2)(-\sin t) + (x^2 - 2yx)(\cos t)
Substitute x=costx = \cos t and y=sinty = \sin t:
dwdt=(2costsintsin2t)(sint)+(cos2t2sintcost)(cost)\frac{dw}{dt} = (2\cos t \sin t - \sin^2 t)(-\sin t) + (\cos^2 t - 2\sin t \cos t)(\cos t)
dwdt=2costsin2t+sin3t+cos3t2sintcos2t\frac{dw}{dt} = -2\cos t \sin^2 t + \sin^3 t + \cos^3 t - 2\sin t \cos^2 t
dwdt=cos3t2costsin2t2sintcos2t+sin3t\frac{dw}{dt} = \cos^3 t - 2\cos t \sin^2 t - 2\sin t \cos^2 t + \sin^3 t
dwdt=cos3t+sin3t2costsint(sint+cost)\frac{dw}{dt} = \cos^3 t + \sin^3 t - 2\cos t \sin t(\sin t + \cos t)
dwdt=(cost+sint)(cos2tcostsint+sin2t)2costsint(cost+sint)\frac{dw}{dt} = (\cos t + \sin t)(\cos^2 t - \cos t \sin t + \sin^2 t) - 2\cos t \sin t (\cos t + \sin t)
dwdt=(cost+sint)(1costsint)2costsint(cost+sint)\frac{dw}{dt} = (\cos t + \sin t)(1 - \cos t \sin t) - 2\cos t \sin t(\cos t + \sin t)
dwdt=(cost+sint)(1costsint2costsint)\frac{dw}{dt} = (\cos t + \sin t)(1 - \cos t \sin t - 2\cos t \sin t)
dwdt=(cost+sint)(13costsint)\frac{dw}{dt} = (\cos t + \sin t)(1 - 3\cos t \sin t)
Problem 3: w=exsiny+eysinxw = e^x\sin y + e^y\sin x, x=3tx = 3t, y=2ty = 2t
We use the chain rule:
dwdt=wxdxdt+wydydt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}
First, we find the partial derivatives:
wx=exsiny+eycosx\frac{\partial w}{\partial x} = e^x\sin y + e^y\cos x
wy=excosy+eysinx\frac{\partial w}{\partial y} = e^x\cos y + e^y\sin x
Next, we find the derivatives of xx and yy with respect to tt:
dxdt=3\frac{dx}{dt} = 3
dydt=2\frac{dy}{dt} = 2
Now, we substitute these into the chain rule formula:
dwdt=(exsiny+eycosx)(3)+(excosy+eysinx)(2)\frac{dw}{dt} = (e^x\sin y + e^y\cos x)(3) + (e^x\cos y + e^y\sin x)(2)
Substitute x=3tx = 3t and y=2ty = 2t:
dwdt=3(e3tsin(2t)+e2tcos(3t))+2(e3tcos(2t)+e2tsin(3t))\frac{dw}{dt} = 3(e^{3t}\sin(2t) + e^{2t}\cos(3t)) + 2(e^{3t}\cos(2t) + e^{2t}\sin(3t))
dwdt=3e3tsin(2t)+3e2tcos(3t)+2e3tcos(2t)+2e2tsin(3t)\frac{dw}{dt} = 3e^{3t}\sin(2t) + 3e^{2t}\cos(3t) + 2e^{3t}\cos(2t) + 2e^{2t}\sin(3t)
dwdt=e3t(3sin(2t)+2cos(2t))+e2t(3cos(3t)+2sin(3t))\frac{dw}{dt} = e^{3t}(3\sin(2t) + 2\cos(2t)) + e^{2t}(3\cos(3t) + 2\sin(3t))
Problem 4: w=ln(x/y)w = \ln(x/y), x=tantx = \tan t, y=sec2ty = \sec^2 t
w=ln(x)ln(y)w = \ln(x) - \ln(y)
We use the chain rule:
dwdt=wxdxdt+wydydt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}
First, we find the partial derivatives:
wx=1x\frac{\partial w}{\partial x} = \frac{1}{x}
wy=1y\frac{\partial w}{\partial y} = -\frac{1}{y}
Next, we find the derivatives of xx and yy with respect to tt:
dxdt=sec2t\frac{dx}{dt} = \sec^2 t
dydt=2sect(secttant)=2sec2ttant\frac{dy}{dt} = 2\sec t (\sec t \tan t) = 2\sec^2 t \tan t
Now, we substitute these into the chain rule formula:
dwdt=(1x)(sec2t)+(1y)(2sec2ttant)\frac{dw}{dt} = (\frac{1}{x})(\sec^2 t) + (-\frac{1}{y})(2\sec^2 t \tan t)
Substitute x=tantx = \tan t and y=sec2ty = \sec^2 t:
dwdt=(1tant)(sec2t)+(1sec2t)(2sec2ttant)\frac{dw}{dt} = (\frac{1}{\tan t})(\sec^2 t) + (-\frac{1}{\sec^2 t})(2\sec^2 t \tan t)
dwdt=sec2ttant2tant\frac{dw}{dt} = \frac{\sec^2 t}{\tan t} - 2\tan t
dwdt=1cos2tcostsint2tant\frac{dw}{dt} = \frac{1}{\cos^2 t} \cdot \frac{\cos t}{\sin t} - 2\tan t
dwdt=1costsint2tant\frac{dw}{dt} = \frac{1}{\cos t \sin t} - 2\tan t
dwdt=1costsint2sintcost\frac{dw}{dt} = \frac{1}{\cos t \sin t} - \frac{2\sin t}{\cos t}
dwdt=12sin2tcostsint\frac{dw}{dt} = \frac{1 - 2\sin^2 t}{\cos t \sin t}
dwdt=cos2t12sin2t=2cot2t\frac{dw}{dt} = \frac{\cos 2t}{\frac{1}{2}\sin 2t} = 2\cot 2t
Problem 5: w=sin(xyz2)w = \sin(xyz^2), x=t3x = t^3, y=t2y = t^2, z=tz = t
dwdt=wxdxdt+wydydt+wzdzdt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}
wx=cos(xyz2)yz2\frac{\partial w}{\partial x} = \cos(xyz^2)yz^2
wy=cos(xyz2)xz2\frac{\partial w}{\partial y} = \cos(xyz^2)xz^2
wz=cos(xyz2)2xyz\frac{\partial w}{\partial z} = \cos(xyz^2)2xyz
dxdt=3t2\frac{dx}{dt} = 3t^2
dydt=2t\frac{dy}{dt} = 2t
dzdt=1\frac{dz}{dt} = 1
dwdt=cos(xyz2)[yz2(3t2)+xz2(2t)+2xyz(1)]\frac{dw}{dt} = \cos(xyz^2)[yz^2(3t^2) + xz^2(2t) + 2xyz(1)]
dwdt=cos((t3)(t2)(t)2)[(t2)(t)2(3t2)+(t3)(t)2(2t)+2(t3)(t2)(t)(1)]\frac{dw}{dt} = \cos((t^3)(t^2)(t)^2)[(t^2)(t)^2(3t^2) + (t^3)(t)^2(2t) + 2(t^3)(t^2)(t)(1)]
dwdt=cos(t7)[3t6+2t6+2t6]\frac{dw}{dt} = \cos(t^7)[3t^6 + 2t^6 + 2t^6]
dwdt=cos(t7)[7t6]\frac{dw}{dt} = \cos(t^7)[7t^6]
dwdt=7t6cos(t7)\frac{dw}{dt} = 7t^6\cos(t^7)
Problem 6: w=xy+yz+xzw = xy + yz + xz, x=t2x = t^2, y=1t2y = 1-t^2, z=1tz = 1-t
dwdt=wxdxdt+wydydt+wzdzdt\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}
wx=y+z\frac{\partial w}{\partial x} = y + z
wy=x+z\frac{\partial w}{\partial y} = x + z
wz=y+x\frac{\partial w}{\partial z} = y + x
dxdt=2t\frac{dx}{dt} = 2t
dydt=2t\frac{dy}{dt} = -2t
dzdt=1\frac{dz}{dt} = -1
dwdt=(y+z)(2t)+(x+z)(2t)+(x+y)(1)\frac{dw}{dt} = (y+z)(2t) + (x+z)(-2t) + (x+y)(-1)
dwdt=(1t2+1t)(2t)+(t2+1t)(2t)+(t2+1t2)(1)\frac{dw}{dt} = (1-t^2 + 1-t)(2t) + (t^2 + 1-t)(-2t) + (t^2 + 1-t^2)(-1)
dwdt=(2tt2)(2t)+(t2t+1)(2t)+(1)(1)\frac{dw}{dt} = (2-t-t^2)(2t) + (t^2-t+1)(-2t) + (1)(-1)
dwdt=4t2t22t32t3+2t22t1\frac{dw}{dt} = 4t - 2t^2 - 2t^3 - 2t^3 + 2t^2 - 2t - 1
dwdt=2t4t31\frac{dw}{dt} = 2t - 4t^3 - 1
dwdt=4t3+2t1\frac{dw}{dt} = -4t^3 + 2t - 1

3. Final Answer

1. $\frac{dw}{dt} = 12t^{11}$

2. $\frac{dw}{dt} = (\cos t + \sin t)(1 - 3\cos t \sin t)$

3. $\frac{dw}{dt} = e^{3t}(3\sin(2t) + 2\cos(2t)) + e^{2t}(3\cos(3t) + 2\sin(3t))$

4. $\frac{dw}{dt} = 2\cot 2t$

5. $\frac{dw}{dt} = 7t^6\cos(t^7)$

6. $\frac{dw}{dt} = -4t^3 + 2t - 1$

Related problems in "Analysis"

We need to find the correct solution for the integral $\int x^2 \sin x \, dx$.

IntegrationIntegration by PartsDefinite Integral
2025/5/10

Given the function $f(x) = e^x + (5)^x$, we need to find the value of its derivative at $x=0$, i.e.,...

CalculusDerivativesExponential Functions
2025/5/10

The problem asks us to identify which of the given improper integrals converges. A. $\int_{1}^{\inft...

CalculusIntegrationImproper IntegralsConvergenceDivergence
2025/5/10

The problem asks to find the derivative of the function $f(x) = \text{sech}^{-1}(2x)$ at $x = 0.1$.

CalculusDerivativesInverse Hyperbolic FunctionsDifferentiation
2025/5/10

The problem asks us to find the correct trigonometric substitution to evaluate the integral $\int \s...

IntegrationTrigonometric SubstitutionDefinite IntegralsCalculus
2025/5/10

We need to find the area of the shaded region enclosed by the curves $y = 2x^2 + 2$ and $y = 2x + 6$...

Area between curvesDefinite integralQuadratic equations
2025/5/10

The problem asks us to evaluate the definite integral $\int_1^2 (\frac{1}{x^2} - \frac{1}{x^3}) \, d...

Definite IntegralsIntegrationProperties of Integrals
2025/5/10

We are given that $f(x) \ge 0$ for $a \le x \le b$, and that $\int_a^b f(x) \, dx \ge (k+4+3)$. We w...

Definite IntegralsInequalitiesCalculus
2025/5/10

The problem asks us to find the overestimate of the area under the curve $f(x) = x^3$ on the interva...

CalculusDefinite IntegralsRiemann SumsApproximation
2025/5/10

We are given that $(2 + 4x^2) \le f(x)$. We need to find a correct estimate for the integral $\int_0...

IntegrationInequalitiesDefinite IntegralsCalculus
2025/5/10