Problem 1: w=x2y3, x=t3, y=t2 We use the chain rule:
dtdw=∂x∂wdtdx+∂y∂wdtdy First, we find the partial derivatives:
∂x∂w=2xy3 ∂y∂w=3x2y2 Next, we find the derivatives of x and y with respect to t: dtdx=3t2 dtdy=2t Now, we substitute these into the chain rule formula:
dtdw=(2xy3)(3t2)+(3x2y2)(2t) Substitute x=t3 and y=t2: dtdw=(2(t3)(t2)3)(3t2)+(3(t3)2(t2)2)(2t) dtdw=(2t3t6)(3t2)+(3t6t4)(2t) dtdw=(2t9)(3t2)+(3t10)(2t) dtdw=6t11+6t11 dtdw=12t11 Problem 2: w=x2y−y2x, x=cost, y=sint We use the chain rule:
dtdw=∂x∂wdtdx+∂y∂wdtdy First, we find the partial derivatives:
∂x∂w=2xy−y2 ∂y∂w=x2−2yx Next, we find the derivatives of x and y with respect to t: dtdx=−sint dtdy=cost Now, we substitute these into the chain rule formula:
dtdw=(2xy−y2)(−sint)+(x2−2yx)(cost) Substitute x=cost and y=sint: dtdw=(2costsint−sin2t)(−sint)+(cos2t−2sintcost)(cost) dtdw=−2costsin2t+sin3t+cos3t−2sintcos2t dtdw=cos3t−2costsin2t−2sintcos2t+sin3t dtdw=cos3t+sin3t−2costsint(sint+cost) dtdw=(cost+sint)(cos2t−costsint+sin2t)−2costsint(cost+sint) dtdw=(cost+sint)(1−costsint)−2costsint(cost+sint) dtdw=(cost+sint)(1−costsint−2costsint) dtdw=(cost+sint)(1−3costsint) Problem 3: w=exsiny+eysinx, x=3t, y=2t We use the chain rule:
dtdw=∂x∂wdtdx+∂y∂wdtdy First, we find the partial derivatives:
∂x∂w=exsiny+eycosx ∂y∂w=excosy+eysinx Next, we find the derivatives of x and y with respect to t: dtdx=3 dtdy=2 Now, we substitute these into the chain rule formula:
dtdw=(exsiny+eycosx)(3)+(excosy+eysinx)(2) Substitute x=3t and y=2t: dtdw=3(e3tsin(2t)+e2tcos(3t))+2(e3tcos(2t)+e2tsin(3t)) dtdw=3e3tsin(2t)+3e2tcos(3t)+2e3tcos(2t)+2e2tsin(3t) dtdw=e3t(3sin(2t)+2cos(2t))+e2t(3cos(3t)+2sin(3t)) Problem 4: w=ln(x/y), x=tant, y=sec2t w=ln(x)−ln(y) We use the chain rule:
dtdw=∂x∂wdtdx+∂y∂wdtdy First, we find the partial derivatives:
∂x∂w=x1 ∂y∂w=−y1 Next, we find the derivatives of x and y with respect to t: dtdx=sec2t dtdy=2sect(secttant)=2sec2ttant Now, we substitute these into the chain rule formula:
dtdw=(x1)(sec2t)+(−y1)(2sec2ttant) Substitute x=tant and y=sec2t: dtdw=(tant1)(sec2t)+(−sec2t1)(2sec2ttant) dtdw=tantsec2t−2tant dtdw=cos2t1⋅sintcost−2tant dtdw=costsint1−2tant dtdw=costsint1−cost2sint dtdw=costsint1−2sin2t dtdw=21sin2tcos2t=2cot2t Problem 5: w=sin(xyz2), x=t3, y=t2, z=t dtdw=∂x∂wdtdx+∂y∂wdtdy+∂z∂wdtdz ∂x∂w=cos(xyz2)yz2 ∂y∂w=cos(xyz2)xz2 ∂z∂w=cos(xyz2)2xyz dtdx=3t2 dtdy=2t dtdz=1 dtdw=cos(xyz2)[yz2(3t2)+xz2(2t)+2xyz(1)] dtdw=cos((t3)(t2)(t)2)[(t2)(t)2(3t2)+(t3)(t)2(2t)+2(t3)(t2)(t)(1)] dtdw=cos(t7)[3t6+2t6+2t6] dtdw=cos(t7)[7t6] dtdw=7t6cos(t7) Problem 6: w=xy+yz+xz, x=t2, y=1−t2, z=1−t dtdw=∂x∂wdtdx+∂y∂wdtdy+∂z∂wdtdz ∂x∂w=y+z ∂y∂w=x+z ∂z∂w=y+x dtdx=2t dtdy=−2t dtdz=−1 dtdw=(y+z)(2t)+(x+z)(−2t)+(x+y)(−1) dtdw=(1−t2+1−t)(2t)+(t2+1−t)(−2t)+(t2+1−t2)(−1) dtdw=(2−t−t2)(2t)+(t2−t+1)(−2t)+(1)(−1) dtdw=4t−2t2−2t3−2t3+2t2−2t−1 dtdw=2t−4t3−1 dtdw=−4t3+2t−1