i. We will use implicit differentiation to find dxdy. Differentiate both sides of the equation 3x+y3−4y=10x2 with respect to x. dxd(3x)+dxd(y3)−dxd(4y)=dxd(10x2) Using the chain rule, we get:
3+3y2dxdy−4dxdy=20x Now, isolate dxdy: 3y2dxdy−4dxdy=20x−3 Factor out dxdy: dxdy(3y2−4)=20x−3 Finally, solve for dxdy: dxdy=3y2−420x−3 ii. We want to find the derivative of y=33x−1. We can rewrite this as y=(3x−1)31. Using the chain rule, we have:
dxdy=31(3x−1)31−1⋅dxd(3x−1) dxdy=31(3x−1)−32⋅(3) dxdy=(3x−1)−32 dxdy=(3x−1)321 dxdy=(33x−1)21