The problem asks us to find the derivatives of two functions. i. $3x + y^3 - 4y = 10x^2$ ii. $y = \sqrt[3]{3x-1}$

AnalysisDifferentiationImplicit DifferentiationChain RuleDerivatives
2025/5/9

1. Problem Description

The problem asks us to find the derivatives of two functions.
i. 3x+y34y=10x23x + y^3 - 4y = 10x^2
ii. y=3x13y = \sqrt[3]{3x-1}

2. Solution Steps

i. We will use implicit differentiation to find dydx\frac{dy}{dx}.
Differentiate both sides of the equation 3x+y34y=10x23x + y^3 - 4y = 10x^2 with respect to xx.
ddx(3x)+ddx(y3)ddx(4y)=ddx(10x2)\frac{d}{dx}(3x) + \frac{d}{dx}(y^3) - \frac{d}{dx}(4y) = \frac{d}{dx}(10x^2)
Using the chain rule, we get:
3+3y2dydx4dydx=20x3 + 3y^2 \frac{dy}{dx} - 4\frac{dy}{dx} = 20x
Now, isolate dydx\frac{dy}{dx}:
3y2dydx4dydx=20x33y^2 \frac{dy}{dx} - 4\frac{dy}{dx} = 20x - 3
Factor out dydx\frac{dy}{dx}:
dydx(3y24)=20x3\frac{dy}{dx}(3y^2 - 4) = 20x - 3
Finally, solve for dydx\frac{dy}{dx}:
dydx=20x33y24\frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4}
ii. We want to find the derivative of y=3x13y = \sqrt[3]{3x-1}.
We can rewrite this as y=(3x1)13y = (3x-1)^{\frac{1}{3}}.
Using the chain rule, we have:
dydx=13(3x1)131ddx(3x1)\frac{dy}{dx} = \frac{1}{3}(3x-1)^{\frac{1}{3} - 1} \cdot \frac{d}{dx}(3x-1)
dydx=13(3x1)23(3)\frac{dy}{dx} = \frac{1}{3}(3x-1)^{-\frac{2}{3}} \cdot (3)
dydx=(3x1)23\frac{dy}{dx} = (3x-1)^{-\frac{2}{3}}
dydx=1(3x1)23\frac{dy}{dx} = \frac{1}{(3x-1)^{\frac{2}{3}}}
dydx=1(3x13)2\frac{dy}{dx} = \frac{1}{(\sqrt[3]{3x-1})^2}

3. Final Answer

i. dydx=20x33y24\frac{dy}{dx} = \frac{20x - 3}{3y^2 - 4}
ii. dydx=1(3x1)23\frac{dy}{dx} = \frac{1}{(3x-1)^{\frac{2}{3}}} or 1(3x13)2\frac{1}{(\sqrt[3]{3x-1})^2}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7