The problem asks us to find the Fourier series representation of the function $f(x)$ defined as: $f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$

AnalysisFourier SeriesIntegrationTrigonometric Functions
2025/5/9

1. Problem Description

The problem asks us to find the Fourier series representation of the function f(x)f(x) defined as:
f(x)={2,2<x<0x,0<x<2f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}

2. Solution Steps

The Fourier series representation of a function f(x)f(x) defined on the interval (L,L)(-L, L) is given by:
f(x)=a02+n=1[ancos(nπxL)+bnsin(nπxL)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})]
Here, L=2L=2. Thus, the Fourier series is
f(x)=a02+n=1[ancos(nπx2)+bnsin(nπx2)]f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{2}) + b_n \sin(\frac{n\pi x}{2})]
The coefficients are given by:
a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx
First, we calculate a0a_0:
a0=1222f(x)dx=12[202dx+02xdx]a_0 = \frac{1}{2} \int_{-2}^{2} f(x) dx = \frac{1}{2} \left[ \int_{-2}^{0} 2 dx + \int_{0}^{2} x dx \right]
a0=12[2x20+x2202]=12[2(0(2))+222022]a_0 = \frac{1}{2} \left[ 2x |_{-2}^{0} + \frac{x^2}{2} |_{0}^{2} \right] = \frac{1}{2} \left[ 2(0 - (-2)) + \frac{2^2}{2} - \frac{0^2}{2} \right]
a0=12[4+2]=62=3a_0 = \frac{1}{2} [ 4 + 2 ] = \frac{6}{2} = 3
Next, we calculate ana_n:
an=1222f(x)cos(nπx2)dx=12[202cos(nπx2)dx+02xcos(nπx2)dx]a_n = \frac{1}{2} \int_{-2}^{2} f(x) \cos(\frac{n\pi x}{2}) dx = \frac{1}{2} \left[ \int_{-2}^{0} 2 \cos(\frac{n\pi x}{2}) dx + \int_{0}^{2} x \cos(\frac{n\pi x}{2}) dx \right]
202cos(nπx2)dx=22nπsin(nπx2)20=4nπ[sin(0)sin(nπ)]=4nπ[00]=0\int_{-2}^{0} 2 \cos(\frac{n\pi x}{2}) dx = 2 \cdot \frac{2}{n\pi} \sin(\frac{n\pi x}{2}) |_{-2}^{0} = \frac{4}{n\pi} [\sin(0) - \sin(-n\pi)] = \frac{4}{n\pi} [0 - 0] = 0
02xcos(nπx2)dx\int_{0}^{2} x \cos(\frac{n\pi x}{2}) dx Using integration by parts, let u=xu=x, dv=cos(nπx2)dxdv = \cos(\frac{n\pi x}{2}) dx. Then du=dxdu = dx, v=2nπsin(nπx2)v = \frac{2}{n\pi} \sin(\frac{n\pi x}{2}).
02xcos(nπx2)dx=x2nπsin(nπx2)02022nπsin(nπx2)dx\int_{0}^{2} x \cos(\frac{n\pi x}{2}) dx = x \cdot \frac{2}{n\pi} \sin(\frac{n\pi x}{2}) |_{0}^{2} - \int_{0}^{2} \frac{2}{n\pi} \sin(\frac{n\pi x}{2}) dx
=[22nπsin(nπ)0]2nπ(2nπcos(nπx2))02= [2 \cdot \frac{2}{n\pi} \sin(n\pi) - 0] - \frac{2}{n\pi} \cdot (-\frac{2}{n\pi} \cos(\frac{n\pi x}{2})) |_{0}^{2}
=0+4n2π2[cos(nπ)cos(0)]=4n2π2[cos(nπ)1]= 0 + \frac{4}{n^2 \pi^2} [\cos(n\pi) - \cos(0)] = \frac{4}{n^2 \pi^2} [\cos(n\pi) - 1]
an=12[0+4n2π2[cos(nπ)1]]=2n2π2[cos(nπ)1]a_n = \frac{1}{2} \left[ 0 + \frac{4}{n^2 \pi^2} [\cos(n\pi) - 1] \right] = \frac{2}{n^2 \pi^2} [\cos(n\pi) - 1]
Since cos(nπ)=(1)n\cos(n\pi) = (-1)^n, an=2n2π2[(1)n1]a_n = \frac{2}{n^2 \pi^2} [(-1)^n - 1]
If nn is even, an=0a_n = 0. If nn is odd, an=2n2π2(11)=4n2π2a_n = \frac{2}{n^2 \pi^2} (-1 - 1) = -\frac{4}{n^2 \pi^2}
Now, we calculate bnb_n:
bn=1222f(x)sin(nπx2)dx=12[202sin(nπx2)dx+02xsin(nπx2)dx]b_n = \frac{1}{2} \int_{-2}^{2} f(x) \sin(\frac{n\pi x}{2}) dx = \frac{1}{2} \left[ \int_{-2}^{0} 2 \sin(\frac{n\pi x}{2}) dx + \int_{0}^{2} x \sin(\frac{n\pi x}{2}) dx \right]
202sin(nπx2)dx=2(2nπcos(nπx2))20=4nπ[cos(0)cos(nπ)]=4nπ[1cos(nπ)]\int_{-2}^{0} 2 \sin(\frac{n\pi x}{2}) dx = 2 \cdot (-\frac{2}{n\pi} \cos(\frac{n\pi x}{2})) |_{-2}^{0} = -\frac{4}{n\pi} [\cos(0) - \cos(-n\pi)] = -\frac{4}{n\pi} [1 - \cos(n\pi)]
02xsin(nπx2)dx\int_{0}^{2} x \sin(\frac{n\pi x}{2}) dx Using integration by parts, let u=xu=x, dv=sin(nπx2)dxdv = \sin(\frac{n\pi x}{2}) dx. Then du=dxdu = dx, v=2nπcos(nπx2)v = -\frac{2}{n\pi} \cos(\frac{n\pi x}{2}).
02xsin(nπx2)dx=x(2nπcos(nπx2))0202(2nπcos(nπx2))dx\int_{0}^{2} x \sin(\frac{n\pi x}{2}) dx = x \cdot (-\frac{2}{n\pi} \cos(\frac{n\pi x}{2})) |_{0}^{2} - \int_{0}^{2} (-\frac{2}{n\pi} \cos(\frac{n\pi x}{2})) dx
=[2(2nπcos(nπ))0]+2nπ(2nπsin(nπx2))02= [2 \cdot (-\frac{2}{n\pi} \cos(n\pi)) - 0] + \frac{2}{n\pi} \cdot (\frac{2}{n\pi} \sin(\frac{n\pi x}{2})) |_{0}^{2}
=4nπcos(nπ)+4n2π2[sin(nπ)sin(0)]=4nπcos(nπ)+0= -\frac{4}{n\pi} \cos(n\pi) + \frac{4}{n^2 \pi^2} [\sin(n\pi) - \sin(0)] = -\frac{4}{n\pi} \cos(n\pi) + 0
bn=12[4nπ[1cos(nπ)]4nπcos(nπ)]=12[4nπ+4nπcos(nπ)4nπcos(nπ)]b_n = \frac{1}{2} \left[ -\frac{4}{n\pi} [1 - \cos(n\pi)] - \frac{4}{n\pi} \cos(n\pi) \right] = \frac{1}{2} \left[ -\frac{4}{n\pi} + \frac{4}{n\pi} \cos(n\pi) - \frac{4}{n\pi} \cos(n\pi) \right]
bn=12[4nπ]=2nπb_n = \frac{1}{2} \left[ -\frac{4}{n\pi} \right] = -\frac{2}{n\pi}
Therefore,
f(x)=32+n=1[ancos(nπx2)+bnsin(nπx2)]f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{n\pi x}{2}) + b_n \sin(\frac{n\pi x}{2})]
f(x)=32+n=1,3,5,...[4n2π2cos(nπx2)]+n=1[2nπsin(nπx2)]f(x) = \frac{3}{2} + \sum_{n=1,3,5,...}^{\infty} [-\frac{4}{n^2 \pi^2} \cos(\frac{n\pi x}{2})] + \sum_{n=1}^{\infty} [-\frac{2}{n\pi} \sin(\frac{n\pi x}{2})]
f(x)=32+k=0[4(2k+1)2π2cos((2k+1)πx2)]+n=1[2nπsin(nπx2)]f(x) = \frac{3}{2} + \sum_{k=0}^{\infty} [-\frac{4}{(2k+1)^2 \pi^2} \cos(\frac{(2k+1)\pi x}{2})] + \sum_{n=1}^{\infty} [-\frac{2}{n\pi} \sin(\frac{n\pi x}{2})]
f(x)=32k=04(2k+1)2π2cos((2k+1)πx2)n=12nπsin(nπx2)f(x) = \frac{3}{2} - \sum_{k=0}^{\infty} \frac{4}{(2k+1)^2 \pi^2} \cos(\frac{(2k+1)\pi x}{2}) - \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin(\frac{n\pi x}{2})

3. Final Answer

f(x)=32k=04(2k+1)2π2cos((2k+1)πx2)n=12nπsin(nπx2)f(x) = \frac{3}{2} - \sum_{k=0}^{\infty} \frac{4}{(2k+1)^2 \pi^2} \cos(\frac{(2k+1)\pi x}{2}) - \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin(\frac{n\pi x}{2})

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7