We want to find the Laplace transform of $F(t) = \sin(kt)$.

AnalysisLaplace TransformIntegration by PartsTrigonometric FunctionsDefinite Integrals
2025/5/9

1. Problem Description

We want to find the Laplace transform of F(t)=sin(kt)F(t) = \sin(kt).

2. Solution Steps

The Laplace transform of a function F(t)F(t) is defined as:
L{F(t)}=0estF(t)dtL\{F(t)\} = \int_0^\infty e^{-st} F(t) dt
So, we need to evaluate the integral:
L{sin(kt)}=0estsin(kt)dtL\{\sin(kt)\} = \int_0^\infty e^{-st} \sin(kt) dt
We can solve this integral using integration by parts twice. Let u=sin(kt)u = \sin(kt) and dv=estdtdv = e^{-st} dt. Then du=kcos(kt)dtdu = k \cos(kt) dt and v=1sestv = -\frac{1}{s}e^{-st}. So,
0estsin(kt)dt=[1sestsin(kt)]0+ks0estcos(kt)dt\int_0^\infty e^{-st} \sin(kt) dt = \left[-\frac{1}{s}e^{-st} \sin(kt)\right]_0^\infty + \frac{k}{s} \int_0^\infty e^{-st} \cos(kt) dt
=0+ks0estcos(kt)dt= 0 + \frac{k}{s} \int_0^\infty e^{-st} \cos(kt) dt
Now we integrate by parts again. Let u=cos(kt)u = \cos(kt) and dv=estdtdv = e^{-st} dt. Then du=ksin(kt)dtdu = -k \sin(kt) dt and v=1sestv = -\frac{1}{s} e^{-st}.
0estcos(kt)dt=[1sestcos(kt)]0ks0estsin(kt)dt\int_0^\infty e^{-st} \cos(kt) dt = \left[-\frac{1}{s} e^{-st} \cos(kt)\right]_0^\infty - \frac{k}{s} \int_0^\infty e^{-st} \sin(kt) dt
=1sks0estsin(kt)dt= \frac{1}{s} - \frac{k}{s} \int_0^\infty e^{-st} \sin(kt) dt
Substitute this back into the original equation:
0estsin(kt)dt=ks[1sks0estsin(kt)dt]\int_0^\infty e^{-st} \sin(kt) dt = \frac{k}{s} \left[\frac{1}{s} - \frac{k}{s} \int_0^\infty e^{-st} \sin(kt) dt\right]
0estsin(kt)dt=ks2k2s20estsin(kt)dt\int_0^\infty e^{-st} \sin(kt) dt = \frac{k}{s^2} - \frac{k^2}{s^2} \int_0^\infty e^{-st} \sin(kt) dt
Let I=0estsin(kt)dtI = \int_0^\infty e^{-st} \sin(kt) dt. Then
I=ks2k2s2II = \frac{k}{s^2} - \frac{k^2}{s^2} I
I+k2s2I=ks2I + \frac{k^2}{s^2} I = \frac{k}{s^2}
I(1+k2s2)=ks2I \left(1 + \frac{k^2}{s^2}\right) = \frac{k}{s^2}
I(s2+k2s2)=ks2I \left(\frac{s^2 + k^2}{s^2}\right) = \frac{k}{s^2}
I=ks2+k2I = \frac{k}{s^2 + k^2}
Therefore, L{sin(kt)}=ks2+k2L\{\sin(kt)\} = \frac{k}{s^2 + k^2}.

3. Final Answer

L{sin(kt)}=ks2+k2L\{\sin(kt)\} = \frac{k}{s^2 + k^2}

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7