The Laplace transform of a function F(t) is defined as: L{F(t)}=∫0∞e−stF(t)dt So, we need to evaluate the integral:
L{sin(kt)}=∫0∞e−stsin(kt)dt We can solve this integral using integration by parts twice. Let u=sin(kt) and dv=e−stdt. Then du=kcos(kt)dt and v=−s1e−st. So, ∫0∞e−stsin(kt)dt=[−s1e−stsin(kt)]0∞+sk∫0∞e−stcos(kt)dt =0+sk∫0∞e−stcos(kt)dt Now we integrate by parts again. Let u=cos(kt) and dv=e−stdt. Then du=−ksin(kt)dt and v=−s1e−st. ∫0∞e−stcos(kt)dt=[−s1e−stcos(kt)]0∞−sk∫0∞e−stsin(kt)dt =s1−sk∫0∞e−stsin(kt)dt Substitute this back into the original equation:
∫0∞e−stsin(kt)dt=sk[s1−sk∫0∞e−stsin(kt)dt] ∫0∞e−stsin(kt)dt=s2k−s2k2∫0∞e−stsin(kt)dt Let I=∫0∞e−stsin(kt)dt. Then I=s2k−s2k2I I+s2k2I=s2k I(1+s2k2)=s2k I(s2s2+k2)=s2k I=s2+k2k Therefore, L{sin(kt)}=s2+k2k.