We are asked to find the Fourier series of the function $f(x)$ defined as: $f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}$

AnalysisFourier SeriesTrigonometric SeriesIntegration
2025/5/9

1. Problem Description

We are asked to find the Fourier series of the function f(x)f(x) defined as:
f(x)={2,2<x<0x,0<x<2f(x) = \begin{cases} 2, & -2 < x < 0 \\ x, & 0 < x < 2 \end{cases}

2. Solution Steps

The Fourier series of a function f(x)f(x) defined on the interval (L,L)(-L, L) is given by:
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)
where the Fourier coefficients are given by:
a0=1LLLf(x)dxa_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx
In our case, L=2L = 2. Let's calculate the coefficients:
a0=1222f(x)dx=12(202dx+02xdx)=12([2x]20+[x22]02)=12((0(4))+(420))=12(4+2)=62=3a_0 = \frac{1}{2} \int_{-2}^{2} f(x) dx = \frac{1}{2} \left( \int_{-2}^{0} 2 dx + \int_{0}^{2} x dx \right) = \frac{1}{2} \left( [2x]_{-2}^{0} + [\frac{x^2}{2}]_{0}^{2} \right) = \frac{1}{2} \left( (0 - (-4)) + (\frac{4}{2} - 0) \right) = \frac{1}{2} (4 + 2) = \frac{6}{2} = 3
an=1222f(x)cos(nπx2)dx=12(202cos(nπx2)dx+02xcos(nπx2)dx)a_n = \frac{1}{2} \int_{-2}^{2} f(x) \cos\left(\frac{n\pi x}{2}\right) dx = \frac{1}{2} \left( \int_{-2}^{0} 2 \cos\left(\frac{n\pi x}{2}\right) dx + \int_{0}^{2} x \cos\left(\frac{n\pi x}{2}\right) dx \right)
202cos(nπx2)dx=2[2nπsin(nπx2)]20=4nπ(sin(0)sin(nπ))=4nπ(00)=0\int_{-2}^{0} 2 \cos\left(\frac{n\pi x}{2}\right) dx = 2 \left[ \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_{-2}^{0} = \frac{4}{n\pi} \left( \sin(0) - \sin(-n\pi) \right) = \frac{4}{n\pi} (0 - 0) = 0
02xcos(nπx2)dx=[2xnπsin(nπx2)+4n2π2cos(nπx2)]02=(4nπsin(nπ)+4n2π2cos(nπ))(0+4n2π2cos(0))=0+4n2π2(1)n4n2π2=4n2π2((1)n1)\int_{0}^{2} x \cos\left(\frac{n\pi x}{2}\right) dx = \left[ \frac{2x}{n\pi} \sin\left(\frac{n\pi x}{2}\right) + \frac{4}{n^2 \pi^2} \cos\left(\frac{n\pi x}{2}\right) \right]_{0}^{2} = \left( \frac{4}{n\pi} \sin(n\pi) + \frac{4}{n^2 \pi^2} \cos(n\pi) \right) - \left( 0 + \frac{4}{n^2 \pi^2} \cos(0) \right) = 0 + \frac{4}{n^2 \pi^2} (-1)^n - \frac{4}{n^2 \pi^2} = \frac{4}{n^2 \pi^2} ((-1)^n - 1)
an=12(0+4n2π2((1)n1))=2n2π2((1)n1)a_n = \frac{1}{2} \left( 0 + \frac{4}{n^2 \pi^2} ((-1)^n - 1) \right) = \frac{2}{n^2 \pi^2} ((-1)^n - 1)
bn=1222f(x)sin(nπx2)dx=12(202sin(nπx2)dx+02xsin(nπx2)dx)b_n = \frac{1}{2} \int_{-2}^{2} f(x) \sin\left(\frac{n\pi x}{2}\right) dx = \frac{1}{2} \left( \int_{-2}^{0} 2 \sin\left(\frac{n\pi x}{2}\right) dx + \int_{0}^{2} x \sin\left(\frac{n\pi x}{2}\right) dx \right)
202sin(nπx2)dx=2[2nπcos(nπx2)]20=4nπ(cos(0)cos(nπ))=4nπ(1(1)n)\int_{-2}^{0} 2 \sin\left(\frac{n\pi x}{2}\right) dx = 2 \left[ -\frac{2}{n\pi} \cos\left(\frac{n\pi x}{2}\right) \right]_{-2}^{0} = -\frac{4}{n\pi} \left( \cos(0) - \cos(-n\pi) \right) = -\frac{4}{n\pi} (1 - (-1)^n)
02xsin(nπx2)dx=[2xnπcos(nπx2)+4n2π2sin(nπx2)]02=(4nπcos(nπ)+4n2π2sin(nπ))(0+0)=4nπ(1)n\int_{0}^{2} x \sin\left(\frac{n\pi x}{2}\right) dx = \left[ -\frac{2x}{n\pi} \cos\left(\frac{n\pi x}{2}\right) + \frac{4}{n^2 \pi^2} \sin\left(\frac{n\pi x}{2}\right) \right]_{0}^{2} = \left( -\frac{4}{n\pi} \cos(n\pi) + \frac{4}{n^2 \pi^2} \sin(n\pi) \right) - (0 + 0) = -\frac{4}{n\pi} (-1)^n
bn=12(4nπ(1(1)n)4nπ(1)n)=12(4nπ+4nπ(1)n4nπ(1)n)=2nπb_n = \frac{1}{2} \left( -\frac{4}{n\pi} (1 - (-1)^n) - \frac{4}{n\pi} (-1)^n \right) = \frac{1}{2} \left( -\frac{4}{n\pi} + \frac{4}{n\pi} (-1)^n - \frac{4}{n\pi} (-1)^n \right) = -\frac{2}{n\pi}
Therefore, the Fourier series is:
f(x)=32+n=1(2n2π2((1)n1)cos(nπx2)2nπsin(nπx2))f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} \left( \frac{2}{n^2 \pi^2} ((-1)^n - 1) \cos\left(\frac{n\pi x}{2}\right) - \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right)

3. Final Answer

f(x)=32+n=1(2n2π2((1)n1)cos(nπx2)2nπsin(nπx2))f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} \left( \frac{2}{n^2 \pi^2} ((-1)^n - 1) \cos\left(\frac{n\pi x}{2}\right) - \frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right)

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7