The problem states that if a function $f(x)$ is defined in an open interval $(-L, L)$ and has period $2L$, its Fourier series expansion is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}))$. We are asked to prove the formulas for the Fourier coefficients $a_n$ and $b_n$: (i) $a_n = \frac{1}{L}\int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ (ii) $b_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$

AnalysisFourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/9

1. Problem Description

The problem states that if a function f(x)f(x) is defined in an open interval (L,L)(-L, L) and has period 2L2L, its Fourier series expansion is given by
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L})).
We are asked to prove the formulas for the Fourier coefficients ana_n and bnb_n:
(i) an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L}\int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx
(ii) bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx

2. Solution Steps

To find ana_n, we multiply both sides of the Fourier series equation by cos(mπxL)\cos(\frac{m\pi x}{L}), where mm is an integer, and integrate from L-L to LL:
LLf(x)cos(mπxL)dx=LL[a02+n=1(ancos(nπxL)+bnsin(nπxL))]cos(mπxL)dx\int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx = \int_{-L}^{L} [\frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}))] \cos(\frac{m\pi x}{L}) dx
We can interchange the integral and summation:
LLf(x)cos(mπxL)dx=LLa02cos(mπxL)dx+n=1[LLancos(nπxL)cos(mπxL)dx+LLbnsin(nπxL)cos(mπxL)dx]\int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx = \int_{-L}^{L} \frac{a_0}{2} \cos(\frac{m\pi x}{L}) dx + \sum_{n=1}^\infty [\int_{-L}^{L} a_n \cos(\frac{n\pi x}{L}) \cos(\frac{m\pi x}{L}) dx + \int_{-L}^{L} b_n \sin(\frac{n\pi x}{L}) \cos(\frac{m\pi x}{L}) dx]
We use the following orthogonality properties:
LLcos(nπxL)cos(mπxL)dx={0,nmL,n=m,m02L,n=m=0\int_{-L}^{L} \cos(\frac{n\pi x}{L}) \cos(\frac{m\pi x}{L}) dx = \begin{cases} 0, & n \neq m \\ L, & n = m, m \neq 0 \\ 2L, & n = m = 0 \end{cases}
LLsin(nπxL)cos(mπxL)dx=0\int_{-L}^{L} \sin(\frac{n\pi x}{L}) \cos(\frac{m\pi x}{L}) dx = 0 for all n,mn, m
LLcos(mπxL)dx={0,m02L,m=0\int_{-L}^{L} \cos(\frac{m\pi x}{L}) dx = \begin{cases} 0, & m \neq 0 \\ 2L, & m = 0 \end{cases}
If m0m \neq 0, then LLa02cos(mπxL)dx=0\int_{-L}^{L} \frac{a_0}{2} \cos(\frac{m\pi x}{L}) dx = 0. Then the first term in the summation is amLa_m L when n=mn=m, and 0 otherwise. The second term in the summation is always

0. Thus:

LLf(x)cos(mπxL)dx=amL\int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx = a_m L
am=1LLLf(x)cos(mπxL)dxa_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{m\pi x}{L}) dx
Replacing mm with nn, we get the desired result for ana_n.
To find bnb_n, we multiply both sides of the Fourier series equation by sin(mπxL)\sin(\frac{m\pi x}{L}), where mm is an integer, and integrate from L-L to LL:
LLf(x)sin(mπxL)dx=LL[a02+n=1(ancos(nπxL)+bnsin(nπxL))]sin(mπxL)dx\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} [\frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}))] \sin(\frac{m\pi x}{L}) dx
Interchange the integral and summation:
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+n=1[LLancos(nπxL)sin(mπxL)dx+LLbnsin(nπxL)sin(mπxL)dx]\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = \int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m\pi x}{L}) dx + \sum_{n=1}^\infty [\int_{-L}^{L} a_n \cos(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx + \int_{-L}^{L} b_n \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx]
We use the following orthogonality properties:
LLsin(nπxL)sin(mπxL)dx={0,nmL,n=m\int_{-L}^{L} \sin(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \end{cases}
LLcos(nπxL)sin(mπxL)dx=0\int_{-L}^{L} \cos(\frac{n\pi x}{L}) \sin(\frac{m\pi x}{L}) dx = 0
LLsin(mπxL)dx=0\int_{-L}^{L} \sin(\frac{m\pi x}{L}) dx = 0
Then LLa02sin(mπxL)dx=0\int_{-L}^{L} \frac{a_0}{2} \sin(\frac{m\pi x}{L}) dx = 0. The first term in the summation is always

0. The second term in the summation is $b_m L$ when $n=m$, and 0 otherwise. Thus:

LLf(x)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx = b_m L
bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{m\pi x}{L}) dx
Replacing mm with nn, we get the desired result for bnb_n.

3. Final Answer

(i) an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L}\int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx
(ii) bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L}\int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7