The problem provides the Fourier series expansion of a function $f(x)$ defined on the interval $(-L, L)$ with period $2L$: $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right)$. The task is to prove the formulas for the Fourier coefficients $a_n$ and $b_n$: (i) $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$ (ii) $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

AnalysisFourier SeriesOrthogonalityIntegration
2025/5/9

1. Problem Description

The problem provides the Fourier series expansion of a function f(x)f(x) defined on the interval (L,L)(-L, L) with period 2L2L:
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right).
The task is to prove the formulas for the Fourier coefficients ana_n and bnb_n:
(i) an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
(ii) bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx

2. Solution Steps

(i) To find ana_n, we multiply both sides of the Fourier series expansion by cos(mπxL)\cos\left(\frac{m\pi x}{L}\right) and integrate from L-L to LL, where mm is an integer.
LLf(x)cos(mπxL)dx=LLa02cos(mπxL)dx+LLn=1(ancos(nπxL)+bnsin(nπxL))cos(mπxL)dx\int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \cos\left(\frac{m\pi x}{L}\right) dx + \int_{-L}^{L} \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right) \cos\left(\frac{m\pi x}{L}\right) dx
We can interchange the integral and summation because of convergence properties.
LLf(x)cos(mπxL)dx=a02LLcos(mπxL)dx+n=1(anLLcos(nπxL)cos(mπxL)dx+bnLLsin(nπxL)cos(mπxL)dx)\int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \frac{a_0}{2} \int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left(a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx\right)
We will now use the orthogonality properties of sine and cosine functions:
LLcos(nπxL)cos(mπxL)dx={0,nmL,n=m02L,n=m=0\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \neq 0 \\ 2L, & n = m = 0 \end{cases}
LLsin(nπxL)cos(mπxL)dx=0\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = 0 for all nn and mm.
LLsin(nπxL)sin(mπxL)dx={0,nmL,n=m00,n=m=0\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \neq 0 \\ 0, & n = m = 0 \end{cases}
The first term on the right-hand side is:
LLcos(mπxL)dx=0\int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) dx = 0 for m0m \neq 0.
If m=0m=0, LLa02cos(0)dx=a02LL1dx=a02(2L)=a0L\int_{-L}^{L} \frac{a_0}{2} \cos(0) dx = \frac{a_0}{2} \int_{-L}^{L} 1 dx = \frac{a_0}{2} (2L) = a_0L.
Since we are seeking ana_n (where n0n \neq 0), we have:
LLf(x)cos(nπxL)dx=anLLcos2(nπxL)dx=anL\int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = a_n \int_{-L}^{L} \cos^2\left(\frac{n\pi x}{L}\right) dx = a_n L
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
(ii) To find bnb_n, we multiply both sides of the Fourier series expansion by sin(mπxL)\sin\left(\frac{m\pi x}{L}\right) and integrate from L-L to LL, where mm is an integer.
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+LLn=1(ancos(nπxL)+bnsin(nπxL))sin(mπxL)dx\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \sin\left(\frac{m\pi x}{L}\right) dx + \int_{-L}^{L} \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right) \sin\left(\frac{m\pi x}{L}\right) dx
LLf(x)sin(mπxL)dx=a02LLsin(mπxL)dx+n=1(anLLcos(nπxL)sin(mπxL)dx+bnLLsin(nπxL)sin(mπxL)dx)\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \frac{a_0}{2} \int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left(a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx\right)
LLsin(mπxL)dx=0\int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) dx = 0 for all mm.
Thus, LLa02sin(mπxL)dx=0\int_{-L}^{L} \frac{a_0}{2} \sin\left(\frac{m\pi x}{L}\right) dx = 0
Using orthogonality properties, we get:
LLf(x)sin(nπxL)dx=bnLLsin2(nπxL)dx=bnL\int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = b_n \int_{-L}^{L} \sin^2\left(\frac{n\pi x}{L}\right) dx = b_n L
Therefore,
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx

3. Final Answer

(i) an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
(ii) bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7