We use the chain rule to find ∂t∂w: ∂t∂w=∂x∂w∂t∂x+∂y∂w∂t∂y First, we compute the partial derivatives:
∂x∂w=2xy ∂y∂w=x2 ∂t∂x=s ∂t∂y=−1 Now, we substitute these into the chain rule formula:
∂t∂w=(2xy)(s)+(x2)(−1) ∂t∂w=2xys−x2 Next, we substitute x=st and y=s−t into the equation: ∂t∂w=2(st)(s−t)s−(st)2 ∂t∂w=2s2t(s−t)−s2t2 ∂t∂w=2s3t−2s2t2−s2t2 ∂t∂w=2s3t−3s2t2