We can expand the given expression using the formula for the square of a trinomial:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc. In our case, a=x, b=−y, and c=−2z. Substituting these values into the formula, we get: (x−y−2z)2=(x+(−y)+(−2z))2 =x2+(−y)2+(−2z)2+2(x)(−y)+2(x)(−2z)+2(−y)(−2z) =x2+y2+4z2−2xy−4xz+4yz