Expand the expression $(x - y - 2z)^2$.

AlgebraAlgebraic ExpansionPolynomialsTrinomial Square
2025/5/10

1. Problem Description

Expand the expression (xy2z)2(x - y - 2z)^2.

2. Solution Steps

We can expand the given expression using the formula for the square of a trinomial:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc.
In our case, a=xa = x, b=yb = -y, and c=2zc = -2z. Substituting these values into the formula, we get:
(xy2z)2=(x+(y)+(2z))2(x - y - 2z)^2 = (x + (-y) + (-2z))^2
=x2+(y)2+(2z)2+2(x)(y)+2(x)(2z)+2(y)(2z)= x^2 + (-y)^2 + (-2z)^2 + 2(x)(-y) + 2(x)(-2z) + 2(-y)(-2z)
=x2+y2+4z22xy4xz+4yz= x^2 + y^2 + 4z^2 - 2xy - 4xz + 4yz

3. Final Answer

x2+y2+4z22xy4xz+4yzx^2 + y^2 + 4z^2 - 2xy - 4xz + 4yz

Related problems in "Algebra"