Expand the expression $(x - y - 1)(x - y + 3)$.

AlgebraPolynomial ExpansionAlgebraic Manipulation
2025/5/10

1. Problem Description

Expand the expression (xy1)(xy+3)(x - y - 1)(x - y + 3).

2. Solution Steps

Let A=xyA = x - y. Then the given expression becomes:
(A1)(A+3)(A - 1)(A + 3).
Expanding this expression, we get:
A2+3AA3=A2+2A3A^2 + 3A - A - 3 = A^2 + 2A - 3.
Substitute A=xyA = x - y back into the expression:
(xy)2+2(xy)3(x - y)^2 + 2(x - y) - 3.
Now expand (xy)2(x - y)^2:
(xy)2=x22xy+y2(x - y)^2 = x^2 - 2xy + y^2.
Substitute this back into the expression:
x22xy+y2+2(xy)3x^2 - 2xy + y^2 + 2(x - y) - 3.
Distribute the 2:
x22xy+y2+2x2y3x^2 - 2xy + y^2 + 2x - 2y - 3.

3. Final Answer

x22xy+y2+2x2y3x^2 - 2xy + y^2 + 2x - 2y - 3

Related problems in "Algebra"