The problem is to simplify the complex fraction $\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i}$.

AlgebraComplex NumbersComplex FractionsSimplificationConjugate
2025/5/10

1. Problem Description

The problem is to simplify the complex fraction 1+2i32i\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i}.

2. Solution Steps

To simplify the complex fraction, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of 32i\sqrt{3} - 2i is 3+2i\sqrt{3} + 2i.
\begin{align*}
\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} &= \frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} \cdot \frac{\sqrt{3} + 2i}{\sqrt{3} + 2i} \\
&= \frac{(1 + \sqrt{2}i)(\sqrt{3} + 2i)}{(\sqrt{3} - 2i)(\sqrt{3} + 2i)}
\end{align*}
Now, we multiply the terms in the numerator and denominator.
Numerator:
\begin{align*}
(1 + \sqrt{2}i)(\sqrt{3} + 2i) &= 1(\sqrt{3}) + 1(2i) + \sqrt{2}i(\sqrt{3}) + \sqrt{2}i(2i) \\
&= \sqrt{3} + 2i + \sqrt{6}i + 2\sqrt{2}i^2 \\
&= \sqrt{3} + 2i + \sqrt{6}i - 2\sqrt{2} \\
&= (\sqrt{3} - 2\sqrt{2}) + (2 + \sqrt{6})i
\end{align*}
Denominator:
\begin{align*}
(\sqrt{3} - 2i)(\sqrt{3} + 2i) &= (\sqrt{3})^2 - (2i)^2 \\
&= 3 - 4i^2 \\
&= 3 - 4(-1) \\
&= 3 + 4 \\
&= 7
\end{align*}
So,
\begin{align*}
\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} &= \frac{(\sqrt{3} - 2\sqrt{2}) + (2 + \sqrt{6})i}{7} \\
&= \frac{\sqrt{3} - 2\sqrt{2}}{7} + \frac{2 + \sqrt{6}}{7}i
\end{align*}

3. Final Answer

The simplified form of the given complex fraction is 3227+2+67i\frac{\sqrt{3} - 2\sqrt{2}}{7} + \frac{2 + \sqrt{6}}{7}i.

Related problems in "Algebra"

The problem asks to: a) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \sqrt{3} - 1$ in the form $a + b\sq...

RationalizationRadicalsSimplificationAlgebraic Manipulation
2025/5/10

We are given a complex number $z = x + iy$, where $z$ is non-zero. We need to: a) Express $\frac{1}{...

Complex NumbersComplex ConjugateAbsolute Value of Complex NumbersProofs
2025/5/10

Solve for $x$ and $y$ in the equation $\frac{x}{1+i} - \frac{y}{2-i} = \frac{1-5i}{3-2i}$.

Complex NumbersSystems of EquationsLinear Equations
2025/5/10

We are given several complex number problems. (2a) Express $\frac{1}{z}$ in the form $a + ib$, where...

Complex NumbersComplex ConjugateNumber Systems
2025/5/10

We are given the equation $\frac{1}{x+iy} + \frac{1}{1+3i} = 1$, where $x$ and $y$ are real numbers,...

Complex NumbersEquation SolvingComplex Conjugate
2025/5/10

Isaac and Seth share $£3600$. Seth gets twice as much money as Isaac. We need to find out how much S...

Linear EquationsWord ProblemRatio and Proportion
2025/5/10

The problem asks us to solve four systems of linear equations using the substitution method. System ...

Linear EquationsSystems of EquationsSubstitution Method
2025/5/10

The problem requires us to add two complex numbers: $(4 + i\sqrt{3})$ and $(-6 - 2i\sqrt{3})$.

Complex NumbersAdditionImaginary Numbers
2025/5/10

The problem asks us to expand the expression $(x - y - 1)(x - y + 3)$.

Polynomial ExpansionAlgebraic Manipulation
2025/5/10

Expand the expression $(x - y - 2z)^2$.

Algebraic ExpansionPolynomialsTrinomial Square
2025/5/10