The problem is to simplify the complex fraction $\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i}$.
2025/5/10
1. Problem Description
The problem is to simplify the complex fraction .
2. Solution Steps
To simplify the complex fraction, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of is .
\begin{align*}
\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} &= \frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} \cdot \frac{\sqrt{3} + 2i}{\sqrt{3} + 2i} \\
&= \frac{(1 + \sqrt{2}i)(\sqrt{3} + 2i)}{(\sqrt{3} - 2i)(\sqrt{3} + 2i)}
\end{align*}
Now, we multiply the terms in the numerator and denominator.
Numerator:
\begin{align*}
(1 + \sqrt{2}i)(\sqrt{3} + 2i) &= 1(\sqrt{3}) + 1(2i) + \sqrt{2}i(\sqrt{3}) + \sqrt{2}i(2i) \\
&= \sqrt{3} + 2i + \sqrt{6}i + 2\sqrt{2}i^2 \\
&= \sqrt{3} + 2i + \sqrt{6}i - 2\sqrt{2} \\
&= (\sqrt{3} - 2\sqrt{2}) + (2 + \sqrt{6})i
\end{align*}
Denominator:
\begin{align*}
(\sqrt{3} - 2i)(\sqrt{3} + 2i) &= (\sqrt{3})^2 - (2i)^2 \\
&= 3 - 4i^2 \\
&= 3 - 4(-1) \\
&= 3 + 4 \\
&= 7
\end{align*}
So,
\begin{align*}
\frac{1 + \sqrt{2}i}{\sqrt{3} - 2i} &= \frac{(\sqrt{3} - 2\sqrt{2}) + (2 + \sqrt{6})i}{7} \\
&= \frac{\sqrt{3} - 2\sqrt{2}}{7} + \frac{2 + \sqrt{6}}{7}i
\end{align*}
3. Final Answer
The simplified form of the given complex fraction is .