The problem asks us to expand the expression $(x - y - 1)(x - y + 3)$.

AlgebraPolynomial ExpansionAlgebraic Manipulation
2025/5/10

1. Problem Description

The problem asks us to expand the expression (xy1)(xy+3)(x - y - 1)(x - y + 3).

2. Solution Steps

Let A=xyA = x - y. Then the expression becomes (A1)(A+3)(A - 1)(A + 3).
Expanding the expression:
(A1)(A+3)=A2+3AA3=A2+2A3(A - 1)(A + 3) = A^2 + 3A - A - 3 = A^2 + 2A - 3.
Substitute A=xyA = x - y back into the expression:
(xy)2+2(xy)3=(x22xy+y2)+(2x2y)3=x22xy+y2+2x2y3(x - y)^2 + 2(x - y) - 3 = (x^2 - 2xy + y^2) + (2x - 2y) - 3 = x^2 - 2xy + y^2 + 2x - 2y - 3.
(xy1)(xy+3)=(xy)2+3(xy)(xy)3(x-y-1)(x-y+3) = (x-y)^2 + 3(x-y) - (x-y) - 3
=(x22xy+y2)+2(xy)3= (x^2 - 2xy + y^2) + 2(x-y) - 3
=x22xy+y2+2x2y3= x^2 - 2xy + y^2 + 2x - 2y - 3

3. Final Answer

x22xy+y2+2x2y3x^2 - 2xy + y^2 + 2x - 2y - 3