(i) Derivation of a n a_n a n : To find a n a_n a n , we multiply both sides of the Fourier series equation by cos ( m π x L ) \cos\left(\frac{m\pi x}{L}\right) cos ( L mπ x ) and integrate from − L -L − L to L L L : ∫ − L L f ( x ) cos ( m π x L ) d x = ∫ − L L [ a 0 2 + ∑ n = 1 ∞ ( a n cos ( n π x L ) + b n sin ( n π x L ) ) ] cos ( m π x L ) d x \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \left[ \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \right] \cos\left(\frac{m\pi x}{L}\right) dx ∫ − L L f ( x ) cos ( L mπ x ) d x = ∫ − L L [ 2 a 0 + ∑ n = 1 ∞ ( a n cos ( L nπ x ) + b n sin ( L nπ x ) ) ] cos ( L mπ x ) d x . We can interchange the integral and the summation (under appropriate conditions). Then, we get
∫ − L L f ( x ) cos ( m π x L ) d x = ∫ − L L a 0 2 cos ( m π x L ) d x + ∑ n = 1 ∞ [ a n ∫ − L L cos ( n π x L ) cos ( m π x L ) d x + b n ∫ − L L sin ( n π x L ) cos ( m π x L ) d x ] \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \cos\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx \right] ∫ − L L f ( x ) cos ( L mπ x ) d x = ∫ − L L 2 a 0 cos ( L mπ x ) d x + ∑ n = 1 ∞ [ a n ∫ − L L cos ( L nπ x ) cos ( L mπ x ) d x + b n ∫ − L L sin ( L nπ x ) cos ( L mπ x ) d x ] . Using the orthogonality properties of sine and cosine functions:
∫ − L L cos ( n π x L ) cos ( m π x L ) d x = { 0 , n ≠ m L , n = m ≠ 0 2 L , n = m = 0 \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \neq 0 \\ 2L, & n = m = 0 \end{cases} ∫ − L L cos ( L nπ x ) cos ( L mπ x ) d x = ⎩ ⎨ ⎧ 0 , L , 2 L , n = m n = m = 0 n = m = 0 ∫ − L L sin ( n π x L ) cos ( m π x L ) d x = 0 \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = 0 ∫ − L L sin ( L nπ x ) cos ( L mπ x ) d x = 0 for all n n n and m m m . ∫ − L L cos ( m π x L ) d x = 0 \int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) dx = 0 ∫ − L L cos ( L mπ x ) d x = 0 for m ≠ 0 m \neq 0 m = 0 . Therefore, when m ≠ 0 m \neq 0 m = 0 , ∫ − L L f ( x ) cos ( m π x L ) d x = a m L \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = a_m L ∫ − L L f ( x ) cos ( L mπ x ) d x = a m L . Thus, a m = 1 L ∫ − L L f ( x ) cos ( m π x L ) d x a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx a m = L 1 ∫ − L L f ( x ) cos ( L mπ x ) d x . Replacing m m m with n n n , we have a n = 1 L ∫ − L L f ( x ) cos ( n π x L ) d x a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx a n = L 1 ∫ − L L f ( x ) cos ( L nπ x ) d x .
(ii) Derivation of b n b_n b n : Similarly, to find b n b_n b n , we multiply both sides of the Fourier series equation by sin ( m π x L ) \sin\left(\frac{m\pi x}{L}\right) sin ( L mπ x ) and integrate from − L -L − L to L L L : ∫ − L L f ( x ) sin ( m π x L ) d x = ∫ − L L [ a 0 2 + ∑ n = 1 ∞ ( a n cos ( n π x L ) + b n sin ( n π x L ) ) ] sin ( m π x L ) d x \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \left[ \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \right] \sin\left(\frac{m\pi x}{L}\right) dx ∫ − L L f ( x ) sin ( L mπ x ) d x = ∫ − L L [ 2 a 0 + ∑ n = 1 ∞ ( a n cos ( L nπ x ) + b n sin ( L nπ x ) ) ] sin ( L mπ x ) d x . ∫ − L L f ( x ) sin ( m π x L ) d x = ∫ − L L a 0 2 sin ( m π x L ) d x + ∑ n = 1 ∞ [ a n ∫ − L L cos ( n π x L ) sin ( m π x L ) d x + b n ∫ − L L sin ( n π x L ) sin ( m π x L ) d x ] \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \sin\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx \right] ∫ − L L f ( x ) sin ( L mπ x ) d x = ∫ − L L 2 a 0 sin ( L mπ x ) d x + ∑ n = 1 ∞ [ a n ∫ − L L cos ( L nπ x ) sin ( L mπ x ) d x + b n ∫ − L L sin ( L nπ x ) sin ( L mπ x ) d x ] . Using the orthogonality properties:
∫ − L L cos ( n π x L ) sin ( m π x L ) d x = 0 \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0 ∫ − L L cos ( L nπ x ) sin ( L mπ x ) d x = 0 for all n n n and m m m . ∫ − L L sin ( n π x L ) sin ( m π x L ) d x = { 0 , n ≠ m L , n = m \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \end{cases} ∫ − L L sin ( L nπ x ) sin ( L mπ x ) d x = { 0 , L , n = m n = m ∫ − L L sin ( m π x L ) d x = 0 \int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) dx = 0 ∫ − L L sin ( L mπ x ) d x = 0 for all m m m . Therefore,
∫ − L L f ( x ) sin ( m π x L ) d x = b m L \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = b_m L ∫ − L L f ( x ) sin ( L mπ x ) d x = b m L . Thus, b m = 1 L ∫ − L L f ( x ) sin ( m π x L ) d x b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx b m = L 1 ∫ − L L f ( x ) sin ( L mπ x ) d x . Replacing m m m with n n n , we have b n = 1 L ∫ − L L f ( x ) sin ( n π x L ) d x b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx b n = L 1 ∫ − L L f ( x ) sin ( L nπ x ) d x .