The problem asks us to prove the formulas for the Fourier coefficients $a_n$ and $b_n$ given the Fourier series expansion of a function $f(x)$ defined on the interval $(-L, L)$ with period $2L$. The Fourier series is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$. We need to prove that $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$.

AnalysisFourier SeriesOrthogonalityIntegrationTrigonometric Functions
2025/5/10

1. Problem Description

The problem asks us to prove the formulas for the Fourier coefficients ana_n and bnb_n given the Fourier series expansion of a function f(x)f(x) defined on the interval (L,L)(-L, L) with period 2L2L. The Fourier series is given by
f(x)=a02+n=1(ancos(nπxL)+bnsin(nπxL))f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right).
We need to prove that
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx and
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.

2. Solution Steps

(i) Derivation of ana_n:
To find ana_n, we multiply both sides of the Fourier series equation by cos(mπxL)\cos\left(\frac{m\pi x}{L}\right) and integrate from L-L to LL:
LLf(x)cos(mπxL)dx=LL[a02+n=1(ancos(nπxL)+bnsin(nπxL))]cos(mπxL)dx\int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \left[ \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \right] \cos\left(\frac{m\pi x}{L}\right) dx.
We can interchange the integral and the summation (under appropriate conditions). Then, we get
LLf(x)cos(mπxL)dx=LLa02cos(mπxL)dx+n=1[anLLcos(nπxL)cos(mπxL)dx+bnLLsin(nπxL)cos(mπxL)dx]\int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \cos\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx \right].
Using the orthogonality properties of sine and cosine functions:
LLcos(nπxL)cos(mπxL)dx={0,nmL,n=m02L,n=m=0\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \neq 0 \\ 2L, & n = m = 0 \end{cases}
LLsin(nπxL)cos(mπxL)dx=0\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = 0 for all nn and mm.
LLcos(mπxL)dx=0\int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) dx = 0 for m0m \neq 0.
Therefore, when m0m \neq 0,
LLf(x)cos(mπxL)dx=amL\int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx = a_m L.
Thus, am=1LLLf(x)cos(mπxL)dxa_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{m\pi x}{L}\right) dx.
Replacing mm with nn, we have
an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx.
(ii) Derivation of bnb_n:
Similarly, to find bnb_n, we multiply both sides of the Fourier series equation by sin(mπxL)\sin\left(\frac{m\pi x}{L}\right) and integrate from L-L to LL:
LLf(x)sin(mπxL)dx=LL[a02+n=1(ancos(nπxL)+bnsin(nπxL))]sin(mπxL)dx\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \left[ \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \right] \sin\left(\frac{m\pi x}{L}\right) dx.
LLf(x)sin(mπxL)dx=LLa02sin(mπxL)dx+n=1[anLLcos(nπxL)sin(mπxL)dx+bnLLsin(nπxL)sin(mπxL)dx]\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} \frac{a_0}{2} \sin\left(\frac{m\pi x}{L}\right) dx + \sum_{n=1}^{\infty} \left[ a_n \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx + b_n \int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx \right].
Using the orthogonality properties:
LLcos(nπxL)sin(mπxL)dx=0\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0 for all nn and mm.
LLsin(nπxL)sin(mπxL)dx={0,nmL,n=m\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0, & n \neq m \\ L, & n = m \end{cases}
LLsin(mπxL)dx=0\int_{-L}^{L} \sin\left(\frac{m\pi x}{L}\right) dx = 0 for all mm.
Therefore,
LLf(x)sin(mπxL)dx=bmL\int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx = b_m L.
Thus, bm=1LLLf(x)sin(mπxL)dxb_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx.
Replacing mm with nn, we have
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.

3. Final Answer

an=1LLLf(x)cos(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
bn=1LLLf(x)sin(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7