We need to find $\frac{dy}{dx}$ for the given implicit equations.

AnalysisImplicit DifferentiationCalculusDerivatives
2025/5/10

1. Problem Description

We need to find dydx\frac{dy}{dx} for the given implicit equations.

2. Solution Steps

2

1. $x^3 + 2x^2y - y^3 = 0$

Differentiate both sides with respect to xx:
ddx(x3)+ddx(2x2y)ddx(y3)=ddx(0)\frac{d}{dx}(x^3) + \frac{d}{dx}(2x^2y) - \frac{d}{dx}(y^3) = \frac{d}{dx}(0)
3x2+2ddx(x2y)3y2dydx=03x^2 + 2\frac{d}{dx}(x^2y) - 3y^2\frac{dy}{dx} = 0
3x2+2(x2dydx+yddx(x2))3y2dydx=03x^2 + 2(x^2\frac{dy}{dx} + y\frac{d}{dx}(x^2)) - 3y^2\frac{dy}{dx} = 0
3x2+2(x2dydx+y(2x))3y2dydx=03x^2 + 2(x^2\frac{dy}{dx} + y(2x)) - 3y^2\frac{dy}{dx} = 0
3x2+2x2dydx+4xy3y2dydx=03x^2 + 2x^2\frac{dy}{dx} + 4xy - 3y^2\frac{dy}{dx} = 0
(2x23y2)dydx=3x24xy(2x^2 - 3y^2)\frac{dy}{dx} = -3x^2 - 4xy
dydx=3x24xy2x23y2=3x2+4xy3y22x2\frac{dy}{dx} = \frac{-3x^2 - 4xy}{2x^2 - 3y^2} = \frac{3x^2 + 4xy}{3y^2 - 2x^2}
2

2. $ye^{-x} + 5x - 17 = 0$

Differentiate both sides with respect to xx:
ddx(yex)+ddx(5x)ddx(17)=ddx(0)\frac{d}{dx}(ye^{-x}) + \frac{d}{dx}(5x) - \frac{d}{dx}(17) = \frac{d}{dx}(0)
ddx(yex)+50=0\frac{d}{dx}(ye^{-x}) + 5 - 0 = 0
yddx(ex)+exdydx+5=0y\frac{d}{dx}(e^{-x}) + e^{-x}\frac{dy}{dx} + 5 = 0
y(ex)+exdydx+5=0y(-e^{-x}) + e^{-x}\frac{dy}{dx} + 5 = 0
yex+exdydx=5-ye^{-x} + e^{-x}\frac{dy}{dx} = -5
exdydx=yex5e^{-x}\frac{dy}{dx} = ye^{-x} - 5
dydx=yex5ex=y5ex\frac{dy}{dx} = \frac{ye^{-x} - 5}{e^{-x}} = y - 5e^x
2

3. $x\sin y + y\cos x = 0$

Differentiate both sides with respect to xx:
ddx(xsiny)+ddx(ycosx)=ddx(0)\frac{d}{dx}(x\sin y) + \frac{d}{dx}(y\cos x) = \frac{d}{dx}(0)
xddx(siny)+sinyddx(x)+yddx(cosx)+cosxdydx=0x\frac{d}{dx}(\sin y) + \sin y\frac{d}{dx}(x) + y\frac{d}{dx}(\cos x) + \cos x\frac{dy}{dx} = 0
x(cosy)dydx+siny(1)+y(sinx)+cosxdydx=0x(\cos y)\frac{dy}{dx} + \sin y(1) + y(-\sin x) + \cos x\frac{dy}{dx} = 0
xcosydydx+sinyysinx+cosxdydx=0x\cos y \frac{dy}{dx} + \sin y - y\sin x + \cos x \frac{dy}{dx} = 0
(xcosy+cosx)dydx=ysinxsiny(x\cos y + \cos x)\frac{dy}{dx} = y\sin x - \sin y
dydx=ysinxsinyxcosy+cosx\frac{dy}{dx} = \frac{y\sin x - \sin y}{x\cos y + \cos x}
2

4. $x^2\cos y - y^2\sin x = 0$

Differentiate both sides with respect to xx:
ddx(x2cosy)ddx(y2sinx)=ddx(0)\frac{d}{dx}(x^2\cos y) - \frac{d}{dx}(y^2\sin x) = \frac{d}{dx}(0)
(x2ddx(cosy)+cosyddx(x2))(y2ddx(sinx)+sinxddx(y2))=0(x^2\frac{d}{dx}(\cos y) + \cos y\frac{d}{dx}(x^2)) - (y^2\frac{d}{dx}(\sin x) + \sin x\frac{d}{dx}(y^2)) = 0
(x2(siny)dydx+cosy(2x))(y2cosx+sinx(2ydydx))=0(x^2(-\sin y)\frac{dy}{dx} + \cos y(2x)) - (y^2\cos x + \sin x(2y\frac{dy}{dx})) = 0
x2sinydydx+2xcosyy2cosx2ysinxdydx=0-x^2\sin y \frac{dy}{dx} + 2x\cos y - y^2\cos x - 2y\sin x \frac{dy}{dx} = 0
(x2siny2ysinx)dydx=y2cosx2xcosy(-x^2\sin y - 2y\sin x)\frac{dy}{dx} = y^2\cos x - 2x\cos y
dydx=y2cosx2xcosyx2siny2ysinx=2xcosyy2cosxx2siny+2ysinx\frac{dy}{dx} = \frac{y^2\cos x - 2x\cos y}{-x^2\sin y - 2y\sin x} = \frac{2x\cos y - y^2\cos x}{x^2\sin y + 2y\sin x}

3. Final Answer

2

1. $\frac{dy}{dx} = \frac{3x^2 + 4xy}{3y^2 - 2x^2}$

2

2. $\frac{dy}{dx} = y - 5e^x$

2

3. $\frac{dy}{dx} = \frac{y\sin x - \sin y}{x\cos y + \cos x}$

2

4. $\frac{dy}{dx} = \frac{2x\cos y - y^2\cos x}{x^2\sin y + 2y\sin x}$

Related problems in "Analysis"

We are asked to evaluate the infinite sum $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$.

Infinite SeriesTelescoping SumLimits
2025/6/7

The problem consists of two parts. First, we are asked to evaluate the integral $\int_0^{\pi/2} x^2 ...

IntegrationIntegration by PartsDefinite IntegralsTrigonometric Functions
2025/6/7

The problem asks us to find the derivatives of six different functions.

CalculusDifferentiationProduct RuleQuotient RuleChain RuleTrigonometric Functions
2025/6/7

The problem states that $f(x) = \ln(x+1)$. We are asked to find some information about the function....

CalculusDerivativesChain RuleLogarithmic Function
2025/6/7

The problem asks us to evaluate two limits. The first limit is $\lim_{x\to 0} \frac{\sqrt{x+1} + \sq...

LimitsCalculusL'Hopital's RuleTrigonometry
2025/6/7

We need to find the limit of the expression $\sqrt{3x^2+7x+1}-\sqrt{3}x$ as $x$ approaches infinity.

LimitsCalculusIndeterminate FormsRationalization
2025/6/7

We are asked to find the limit of the expression $\sqrt{3x^2 + 7x + 1} - \sqrt{3}x$ as $x$ approache...

LimitsCalculusRationalizationAsymptotic Analysis
2025/6/7

The problem asks to evaluate the definite integral: $J = \int_0^{\frac{\pi}{2}} \cos(x) \sin^4(x) \,...

Definite IntegralIntegrationSubstitution
2025/6/7

We need to evaluate the definite integral $J = \int_{0}^{\frac{\pi}{2}} \cos x \sin^4 x \, dx$.

Definite IntegralIntegration by SubstitutionTrigonometric Functions
2025/6/7

We need to evaluate the definite integral: $I = \int (\frac{1}{x} + \frac{4}{x^2} - \frac{5}{\sin^2 ...

Definite IntegralsIntegrationTrigonometric Functions
2025/6/7