We will use implicit differentiation to find ∂x∂z. We differentiate both sides of the equation with respect to x, treating y as a constant and z as a function of x. ∂x∂(3x2z+y3−xyz3)=∂x∂(0) Applying the product rule and chain rule where necessary:
∂x∂(3x2z)=3(2x⋅z+x2⋅∂x∂z)=6xz+3x2∂x∂z ∂x∂(y3)=0 (since y is treated as a constant) ∂x∂(xyz3)=y∂x∂(xz3)=y(1⋅z3+x⋅3z2∂x∂z)=yz3+3xyz2∂x∂z So, the derivative of the entire equation with respect to x is: 6xz+3x2∂x∂z+0−(yz3+3xyz2∂x∂z)=0 6xz+3x2∂x∂z−yz3−3xyz2∂x∂z=0 Now, we isolate ∂x∂z: 3x2∂x∂z−3xyz2∂x∂z=yz3−6xz ∂x∂z(3x2−3xyz2)=yz3−6xz ∂x∂z=3x2−3xyz2yz3−6xz We can simplify by dividing both numerator and denominator by 3:
∂x∂z=3x2−3xyz2yz3−6xz=3(x2−xyz2)z3y−6xz=3x(x−yz2)yz3−2(3xz)=3x(x−yz2)yz3−2(3xz)=3x2−3xyz2yz3−2(3xz) Therefore,
∂x∂z=3x2−3xyz2yz3−6xz