Let u=r−s, v=s−t, and p=t−r. Then w=f(u,v,p). We will use the chain rule to find the partial derivatives of w with respect to r, s, and t. ∂r∂w=∂u∂f∂r∂u+∂v∂f∂r∂v+∂p∂f∂r∂p ∂r∂u=∂r∂(r−s)=1 ∂r∂v=∂r∂(s−t)=0 ∂r∂p=∂r∂(t−r)=−1 So, ∂r∂w=∂u∂f(1)+∂v∂f(0)+∂p∂f(−1)=∂u∂f−∂p∂f. ∂s∂w=∂u∂f∂s∂u+∂v∂f∂s∂v+∂p∂f∂s∂p ∂s∂u=∂s∂(r−s)=−1 ∂s∂v=∂s∂(s−t)=1 ∂s∂p=∂s∂(t−r)=0 So, ∂s∂w=∂u∂f(−1)+∂v∂f(1)+∂p∂f(0)=−∂u∂f+∂v∂f. ∂t∂w=∂u∂f∂t∂u+∂v∂f∂t∂v+∂p∂f∂t∂p ∂t∂u=∂t∂(r−s)=0 ∂t∂v=∂t∂(s−t)=−1 ∂t∂p=∂t∂(t−r)=1 So, ∂t∂w=∂u∂f(0)+∂v∂f(−1)+∂p∂f(1)=−∂v∂f+∂p∂f. Now, we add the partial derivatives:
∂r∂w+∂s∂w+∂t∂w=(∂u∂f−∂p∂f)+(−∂u∂f+∂v∂f)+(−∂v∂f+∂p∂f)=∂u∂f−∂p∂f−∂u∂f+∂v∂f−∂v∂f+∂p∂f=0.