The problem asks to find the derivative, $f'(x)$, of eight different functions, $f(x)$, using the definition of the derivative from first principles. The eight functions are: a) $f(x) = x - \frac{1}{x}$ b) $f(x) = \frac{1-x}{2+x}$ c) $f(x) = \frac{1}{x^2 - 3}$ d) $f(x) = |x|$ e) $f(x) = x^3 - x$ f) $f(x) = \sqrt{x}$ g) $f(x) = \sqrt{1 + 2x}$ h) $f(x) = x^3 + 2x$

AnalysisCalculusDifferentiationDerivativesLimitsFirst Principles
2025/5/12

1. Problem Description

The problem asks to find the derivative, f(x)f'(x), of eight different functions, f(x)f(x), using the definition of the derivative from first principles. The eight functions are:
a) f(x)=x1xf(x) = x - \frac{1}{x}
b) f(x)=1x2+xf(x) = \frac{1-x}{2+x}
c) f(x)=1x23f(x) = \frac{1}{x^2 - 3}
d) f(x)=xf(x) = |x|
e) f(x)=x3xf(x) = x^3 - x
f) f(x)=xf(x) = \sqrt{x}
g) f(x)=1+2xf(x) = \sqrt{1 + 2x}
h) f(x)=x3+2xf(x) = x^3 + 2x

2. Solution Steps

The definition of the derivative from first principles is given by:
f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
a) f(x)=x1xf(x) = x - \frac{1}{x}
f(x+h)=(x+h)1x+hf(x+h) = (x+h) - \frac{1}{x+h}
f(x+h)f(x)=(x+h)1x+h(x1x)=h1x+h+1x=h+x+hxx(x+h)=h+hx(x+h)f(x+h) - f(x) = (x+h) - \frac{1}{x+h} - (x - \frac{1}{x}) = h - \frac{1}{x+h} + \frac{1}{x} = h + \frac{x+h-x}{x(x+h)} = h + \frac{h}{x(x+h)}
f(x+h)f(x)h=1+1x(x+h)\frac{f(x+h) - f(x)}{h} = 1 + \frac{1}{x(x+h)}
f(x)=limh0(1+1x(x+h))=1+1x2f'(x) = \lim_{h \to 0} (1 + \frac{1}{x(x+h)}) = 1 + \frac{1}{x^2}
b) f(x)=1x2+xf(x) = \frac{1-x}{2+x}
f(x+h)=1(x+h)2+(x+h)f(x+h) = \frac{1-(x+h)}{2+(x+h)}
f(x+h)f(x)=1xh2+x+h1x2+x=(1xh)(2+x)(1x)(2+x+h)(2+x+h)(2+x)=2+x2xx22hxh(2+x+h2xx2xh)(2+x+h)(2+x)=3h(2+x+h)(2+x)f(x+h) - f(x) = \frac{1-x-h}{2+x+h} - \frac{1-x}{2+x} = \frac{(1-x-h)(2+x) - (1-x)(2+x+h)}{(2+x+h)(2+x)} = \frac{2+x-2x-x^2-2h-xh - (2+x+h-2x-x^2-xh)}{(2+x+h)(2+x)} = \frac{-3h}{(2+x+h)(2+x)}
f(x+h)f(x)h=3(2+x+h)(2+x)\frac{f(x+h) - f(x)}{h} = \frac{-3}{(2+x+h)(2+x)}
f(x)=limh03(2+x+h)(2+x)=3(2+x)2f'(x) = \lim_{h \to 0} \frac{-3}{(2+x+h)(2+x)} = \frac{-3}{(2+x)^2}
c) f(x)=1x23f(x) = \frac{1}{x^2 - 3}
f(x+h)=1(x+h)23f(x+h) = \frac{1}{(x+h)^2 - 3}
f(x+h)f(x)=1(x+h)231x23=x23((x+h)23)((x+h)23)(x23)=x23(x2+2xh+h23)((x+h)23)(x23)=2xhh2((x+h)23)(x23)f(x+h) - f(x) = \frac{1}{(x+h)^2 - 3} - \frac{1}{x^2 - 3} = \frac{x^2 - 3 - ((x+h)^2 - 3)}{((x+h)^2 - 3)(x^2 - 3)} = \frac{x^2 - 3 - (x^2 + 2xh + h^2 - 3)}{((x+h)^2 - 3)(x^2 - 3)} = \frac{-2xh - h^2}{((x+h)^2 - 3)(x^2 - 3)}
f(x+h)f(x)h=2xh((x+h)23)(x23)\frac{f(x+h) - f(x)}{h} = \frac{-2x - h}{((x+h)^2 - 3)(x^2 - 3)}
f(x)=limh02xh((x+h)23)(x23)=2x(x23)2f'(x) = \lim_{h \to 0} \frac{-2x - h}{((x+h)^2 - 3)(x^2 - 3)} = \frac{-2x}{(x^2 - 3)^2}
d) f(x)=xf(x) = |x|
This function is defined piecewise. We need to consider x>0x>0 and x<0x<0 separately.
If x>0x>0, f(x)=xf(x) = x, so f(x+h)=x+hf(x+h) = x+h. Then f(x)=limh0x+hxh=limh0hh=1f'(x) = \lim_{h \to 0} \frac{x+h - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1.
If x<0x<0, f(x)=xf(x) = -x, so f(x+h)=(x+h)f(x+h) = -(x+h). Then f(x)=limh0(x+h)(x)h=limh0hh=1f'(x) = \lim_{h \to 0} \frac{-(x+h) - (-x)}{h} = \lim_{h \to 0} \frac{-h}{h} = -1.
At x=0x=0, the derivative does not exist.
Therefore f(x)=1f'(x) = 1 if x>0x > 0 and f(x)=1f'(x) = -1 if x<0x < 0.
e) f(x)=x3xf(x) = x^3 - x
f(x+h)=(x+h)3(x+h)=x3+3x2h+3xh2+h3xhf(x+h) = (x+h)^3 - (x+h) = x^3 + 3x^2h + 3xh^2 + h^3 - x - h
f(x+h)f(x)=x3+3x2h+3xh2+h3xh(x3x)=3x2h+3xh2+h3hf(x+h) - f(x) = x^3 + 3x^2h + 3xh^2 + h^3 - x - h - (x^3 - x) = 3x^2h + 3xh^2 + h^3 - h
f(x+h)f(x)h=3x2+3xh+h21\frac{f(x+h) - f(x)}{h} = 3x^2 + 3xh + h^2 - 1
f(x)=limh0(3x2+3xh+h21)=3x21f'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1) = 3x^2 - 1
f) f(x)=xf(x) = \sqrt{x}
f(x+h)=x+hf(x+h) = \sqrt{x+h}
f(x+h)f(x)=x+hxf(x+h) - f(x) = \sqrt{x+h} - \sqrt{x}
Multiply by x+h+xx+h+x\frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} to rationalize.
x+hx=(x+h)xx+h+x=hx+h+x\sqrt{x+h} - \sqrt{x} = \frac{(x+h) - x}{\sqrt{x+h} + \sqrt{x}} = \frac{h}{\sqrt{x+h} + \sqrt{x}}
f(x+h)f(x)h=1x+h+x\frac{f(x+h) - f(x)}{h} = \frac{1}{\sqrt{x+h} + \sqrt{x}}
f(x)=limh01x+h+x=12xf'(x) = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}
g) f(x)=1+2xf(x) = \sqrt{1 + 2x}
f(x+h)=1+2(x+h)=1+2x+2hf(x+h) = \sqrt{1 + 2(x+h)} = \sqrt{1 + 2x + 2h}
f(x+h)f(x)=1+2x+2h1+2xf(x+h) - f(x) = \sqrt{1 + 2x + 2h} - \sqrt{1 + 2x}
Multiply by 1+2x+2h+1+2x1+2x+2h+1+2x\frac{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}} to rationalize.
1+2x+2h1+2x=(1+2x+2h)(1+2x)1+2x+2h+1+2x=2h1+2x+2h+1+2x\sqrt{1 + 2x + 2h} - \sqrt{1 + 2x} = \frac{(1 + 2x + 2h) - (1 + 2x)}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}} = \frac{2h}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}}
f(x+h)f(x)h=21+2x+2h+1+2x\frac{f(x+h) - f(x)}{h} = \frac{2}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}}
f(x)=limh021+2x+2h+1+2x=221+2x=11+2xf'(x) = \lim_{h \to 0} \frac{2}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}} = \frac{2}{2\sqrt{1+2x}} = \frac{1}{\sqrt{1+2x}}
h) f(x)=x3+2xf(x) = x^3 + 2x
f(x+h)=(x+h)3+2(x+h)=x3+3x2h+3xh2+h3+2x+2hf(x+h) = (x+h)^3 + 2(x+h) = x^3 + 3x^2h + 3xh^2 + h^3 + 2x + 2h
f(x+h)f(x)=x3+3x2h+3xh2+h3+2x+2h(x3+2x)=3x2h+3xh2+h3+2hf(x+h) - f(x) = x^3 + 3x^2h + 3xh^2 + h^3 + 2x + 2h - (x^3 + 2x) = 3x^2h + 3xh^2 + h^3 + 2h
f(x+h)f(x)h=3x2+3xh+h2+2\frac{f(x+h) - f(x)}{h} = 3x^2 + 3xh + h^2 + 2
f(x)=limh0(3x2+3xh+h2+2)=3x2+2f'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2 + 2) = 3x^2 + 2

3. Final Answer

a) f(x)=1+1x2f'(x) = 1 + \frac{1}{x^2}
b) f(x)=3(2+x)2f'(x) = \frac{-3}{(2+x)^2}
c) f(x)=2x(x23)2f'(x) = \frac{-2x}{(x^2 - 3)^2}
d) f(x)=1f'(x) = 1 if x>0x > 0, f(x)=1f'(x) = -1 if x<0x < 0. The derivative is undefined at x=0x=0.
e) f(x)=3x21f'(x) = 3x^2 - 1
f) f(x)=12xf'(x) = \frac{1}{2\sqrt{x}}
g) f(x)=11+2xf'(x) = \frac{1}{\sqrt{1+2x}}
h) f(x)=3x2+2f'(x) = 3x^2 + 2

Related problems in "Analysis"

The problem seems to involve analysis of a function $f(x) = -x - \frac{4}{x}$. It asks about limits ...

Function AnalysisDerivativesLimitsDomainInequalities
2025/5/13

From what I can decipher, the problem involves analyzing a function $f(x) = -x - \frac{4}{x}$ and an...

LimitsDerivativesAsymptotesFunction Analysis
2025/5/13

The image appears to present several math problems related to limits, derivatives, and inequalities....

LimitsDerivativesInequalitiesFunction AnalysisCalculus
2025/5/13

The problem seems to ask to find the derivative of the function $y = f(x) = \ln(x + \sqrt{1+x^2})$.

CalculusDifferentiationChain RuleLogarithmic FunctionsDerivatives
2025/5/13

The problem asks us to evaluate the definite integral: $A(R) = \int_{-3}^1 (\frac{4-\sqrt{4-4y}}{2} ...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/5/12

Given the function $g(x) = 3x^4 - 2x^2 + 49$, we need to find the first and second derivatives, $g'(...

CalculusDerivativesFirst DerivativeSecond DerivativeSign AnalysisPolynomial Functions
2025/5/12

The problem asks us to evaluate the definite integral of the polynomial $x^2 - 3x + 5$ from $2$ to $...

Definite IntegralIntegrationPolynomialCalculus
2025/5/12

The problem asks us to evaluate the definite integral of $x^2 - 3x$ from 1 to 2, and subtract from t...

Definite IntegralIntegrationCalculus
2025/5/12

The problem asks to evaluate the definite integral $\int_{1}^{2} (x^2 - 3x) \, dx + \int_{1}^{2} (x^...

Definite IntegralIntegrationCalculus
2025/5/12

We are asked to evaluate the definite integral $\int_{-1}^{3} (5x^2 - x - 4) dx$.

Definite IntegralIntegrationPower RuleAntiderivative
2025/5/12