We are asked to evaluate the indefinite integral of the function $\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}$ with respect to $x$.

AnalysisIntegrationIndefinite IntegralTrigonometric Functions
2025/3/7

1. Problem Description

We are asked to evaluate the indefinite integral of the function x2+72(xsinx+9cosx)2\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} with respect to xx.

2. Solution Steps

Let u=xsinx+9cosxu = x \sin x + 9 \cos x.
Then dudx=sinx+xcosx9sinx=xcosx8sinx\frac{du}{dx} = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
We can rewrite the numerator as:
x2+72=x2+819=(x2+81)9x^2 + 72 = x^2 + 81 - 9 = (x^2 + 81) - 9.
Let's consider the derivative of cosxxsinx+9cosx\frac{\cos x}{x \sin x + 9 \cos x}:
ddx(cosxxsinx+9cosx)=sinx(xsinx+9cosx)cosx(xcosx8sinx)(xsinx+9cosx)2=xsin2x9sinxcosxxcos2x+8sinxcosx(xsinx+9cosx)2=x(sin2x+cos2x)sinxcosx(xsinx+9cosx)2=xsinxcosx(xsinx+9cosx)2\frac{d}{dx} \left( \frac{\cos x}{x \sin x + 9 \cos x} \right) = \frac{-\sin x (x \sin x + 9 \cos x) - \cos x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{-x \sin^2 x - 9 \sin x \cos x - x \cos^2 x + 8 \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x (\sin^2 x + \cos^2 x) - \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x - \sin x \cos x}{(x \sin x + 9 \cos x)^2}. This does not appear useful.
Let us consider the derivative of xxsinx+9cosx\frac{x}{x \sin x + 9 \cos x}.
ddx(xxsinx+9cosx)=1(xsinx+9cosx)x(xcosx8sinx)(xsinx+9cosx)2=xsinx+9cosxx2cosx+8xsinx(xsinx+9cosx)2=9xsinx+9cosxx2cosx(xsinx+9cosx)2\frac{d}{dx} \left( \frac{x}{x \sin x + 9 \cos x} \right) = \frac{1(x \sin x + 9 \cos x) - x(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x + 9 \cos x - x^2 \cos x + 8x \sin x}{(x \sin x + 9 \cos x)^2} = \frac{9x \sin x + 9 \cos x - x^2 \cos x}{(x \sin x + 9 \cos x)^2}.
Let f(x)=x2+72(xsinx+9cosx)2f(x) = \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}. We seek to find F(x)F(x) such that F(x)=f(x)F'(x) = f(x).
Observe that ddx(sinxx9cosxxsinx+9cosx)=(cosx19cosx+x9sinx)(xsinx+9cosx)(sinxx9cosx)(xcosx8sinx)(xsinx+9cosx)2=(89cosx+x9sinx)(xsinx+9cosx)(sinxx9cosx)(xcosx8sinx)(xsinx+9cosx)2=89xsinxcosx+8cos2x+x29sin2x+xsinxcosxxsinxcosx+8sin2x+x29cos2x89xsinxcosx(xsinx+9cosx)2=8(cos2x+sin2x)+x29(sin2x+cos2x)(xsinx+9cosx)2=8+x29(xsinx+9cosx)2=72+x29(xsinx+9cosx)2\frac{d}{dx} \left(\frac{\sin x - \frac{x}{9} \cos x}{x \sin x + 9 \cos x} \right) = \frac{(\cos x - \frac{1}{9} \cos x + \frac{x}{9} \sin x) (x \sin x + 9 \cos x) - (\sin x - \frac{x}{9} \cos x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{(\frac{8}{9} \cos x + \frac{x}{9} \sin x) (x \sin x + 9 \cos x) - (\sin x - \frac{x}{9} \cos x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{\frac{8}{9} x \sin x \cos x + 8 \cos^2 x + \frac{x^2}{9} \sin^2 x + x \sin x \cos x - x \sin x \cos x + 8 \sin^2 x + \frac{x^2}{9} \cos^2 x - \frac{8}{9} x \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{8(\cos^2 x + \sin^2 x) + \frac{x^2}{9} (\sin^2 x + \cos^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{8 + \frac{x^2}{9}}{(x \sin x + 9 \cos x)^2} = \frac{72+x^2}{9(x \sin x + 9 \cos x)^2}.
Thus, x2+72(xsinx+9cosx)2dx=9(sinxx9cosxxsinx+9cosx)+C=9sinxxcosxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = 9 \left( \frac{\sin x - \frac{x}{9} \cos x}{x \sin x + 9 \cos x} \right) + C = \frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C.

3. Final Answer

9sinxxcosxxsinx+9cosx+C\frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1