We are asked to evaluate the indefinite integral of the function $\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}$ with respect to $x$.

AnalysisIntegrationIndefinite IntegralTrigonometric Functions
2025/3/7

1. Problem Description

We are asked to evaluate the indefinite integral of the function x2+72(xsinx+9cosx)2\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} with respect to xx.

2. Solution Steps

Let u=xsinx+9cosxu = x \sin x + 9 \cos x.
Then dudx=sinx+xcosx9sinx=xcosx8sinx\frac{du}{dx} = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
We can rewrite the numerator as:
x2+72=x2+819=(x2+81)9x^2 + 72 = x^2 + 81 - 9 = (x^2 + 81) - 9.
Let's consider the derivative of cosxxsinx+9cosx\frac{\cos x}{x \sin x + 9 \cos x}:
ddx(cosxxsinx+9cosx)=sinx(xsinx+9cosx)cosx(xcosx8sinx)(xsinx+9cosx)2=xsin2x9sinxcosxxcos2x+8sinxcosx(xsinx+9cosx)2=x(sin2x+cos2x)sinxcosx(xsinx+9cosx)2=xsinxcosx(xsinx+9cosx)2\frac{d}{dx} \left( \frac{\cos x}{x \sin x + 9 \cos x} \right) = \frac{-\sin x (x \sin x + 9 \cos x) - \cos x (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{-x \sin^2 x - 9 \sin x \cos x - x \cos^2 x + 8 \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x (\sin^2 x + \cos^2 x) - \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{-x - \sin x \cos x}{(x \sin x + 9 \cos x)^2}. This does not appear useful.
Let us consider the derivative of xxsinx+9cosx\frac{x}{x \sin x + 9 \cos x}.
ddx(xxsinx+9cosx)=1(xsinx+9cosx)x(xcosx8sinx)(xsinx+9cosx)2=xsinx+9cosxx2cosx+8xsinx(xsinx+9cosx)2=9xsinx+9cosxx2cosx(xsinx+9cosx)2\frac{d}{dx} \left( \frac{x}{x \sin x + 9 \cos x} \right) = \frac{1(x \sin x + 9 \cos x) - x(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{x \sin x + 9 \cos x - x^2 \cos x + 8x \sin x}{(x \sin x + 9 \cos x)^2} = \frac{9x \sin x + 9 \cos x - x^2 \cos x}{(x \sin x + 9 \cos x)^2}.
Let f(x)=x2+72(xsinx+9cosx)2f(x) = \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}. We seek to find F(x)F(x) such that F(x)=f(x)F'(x) = f(x).
Observe that ddx(sinxx9cosxxsinx+9cosx)=(cosx19cosx+x9sinx)(xsinx+9cosx)(sinxx9cosx)(xcosx8sinx)(xsinx+9cosx)2=(89cosx+x9sinx)(xsinx+9cosx)(sinxx9cosx)(xcosx8sinx)(xsinx+9cosx)2=89xsinxcosx+8cos2x+x29sin2x+xsinxcosxxsinxcosx+8sin2x+x29cos2x89xsinxcosx(xsinx+9cosx)2=8(cos2x+sin2x)+x29(sin2x+cos2x)(xsinx+9cosx)2=8+x29(xsinx+9cosx)2=72+x29(xsinx+9cosx)2\frac{d}{dx} \left(\frac{\sin x - \frac{x}{9} \cos x}{x \sin x + 9 \cos x} \right) = \frac{(\cos x - \frac{1}{9} \cos x + \frac{x}{9} \sin x) (x \sin x + 9 \cos x) - (\sin x - \frac{x}{9} \cos x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{(\frac{8}{9} \cos x + \frac{x}{9} \sin x) (x \sin x + 9 \cos x) - (\sin x - \frac{x}{9} \cos x) (x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} = \frac{\frac{8}{9} x \sin x \cos x + 8 \cos^2 x + \frac{x^2}{9} \sin^2 x + x \sin x \cos x - x \sin x \cos x + 8 \sin^2 x + \frac{x^2}{9} \cos^2 x - \frac{8}{9} x \sin x \cos x}{(x \sin x + 9 \cos x)^2} = \frac{8(\cos^2 x + \sin^2 x) + \frac{x^2}{9} (\sin^2 x + \cos^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{8 + \frac{x^2}{9}}{(x \sin x + 9 \cos x)^2} = \frac{72+x^2}{9(x \sin x + 9 \cos x)^2}.
Thus, x2+72(xsinx+9cosx)2dx=9(sinxx9cosxxsinx+9cosx)+C=9sinxxcosxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = 9 \left( \frac{\sin x - \frac{x}{9} \cos x}{x \sin x + 9 \cos x} \right) + C = \frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C.

3. Final Answer

9sinxxcosxxsinx+9cosx+C\frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29