We need to evaluate the definite integral $I = \int_{0}^{\infty} \frac{\sin(x)}{x} dx$. This is a classic improper integral, often called the Dirichlet integral.

AnalysisDefinite IntegralsImproper IntegralsDirichlet IntegralIntegration by PartsParameterizationDifferentiation under the integral sign
2025/3/7

1. Problem Description

We need to evaluate the definite integral I=0sin(x)xdxI = \int_{0}^{\infty} \frac{\sin(x)}{x} dx. This is a classic improper integral, often called the Dirichlet integral.

2. Solution Steps

We introduce a parameter tt and consider the integral
I(t)=0etxsin(x)xdxI(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin(x)}{x} dx.
Note that I(0)=0sin(x)xdxI(0) = \int_{0}^{\infty} \frac{\sin(x)}{x} dx which is the integral we want to find, and I()=0I(\infty) = 0.
We differentiate I(t)I(t) with respect to tt:
dIdt=ddt0etxsin(x)xdx=0t(etxsin(x)x)dx=0etxsin(x)dx=0etxsin(x)dx\frac{dI}{dt} = \frac{d}{dt} \int_{0}^{\infty} e^{-tx} \frac{\sin(x)}{x} dx = \int_{0}^{\infty} \frac{\partial}{\partial t} (e^{-tx} \frac{\sin(x)}{x}) dx = \int_{0}^{\infty} -e^{-tx} \sin(x) dx = - \int_{0}^{\infty} e^{-tx} \sin(x) dx
We can evaluate this integral using integration by parts twice.
Let u=etxu = e^{-tx} and dv=sin(x)dxdv = \sin(x) dx, so du=tetxdxdu = -te^{-tx} dx and v=cos(x)v = -\cos(x).
Then 0etxsin(x)dx=[etxcos(x)]00tetxcos(x)dx=[0(1)]t0etxcos(x)dx=1t0etxcos(x)dx\int_{0}^{\infty} e^{-tx} \sin(x) dx = [-e^{-tx}\cos(x)]_{0}^{\infty} - \int_{0}^{\infty} t e^{-tx} \cos(x) dx = [0 - (-1)] - t\int_{0}^{\infty} e^{-tx} \cos(x) dx = 1 - t\int_{0}^{\infty} e^{-tx} \cos(x) dx.
Now, let u=etxu = e^{-tx} and dv=cos(x)dxdv = \cos(x) dx, so du=tetxdxdu = -te^{-tx} dx and v=sin(x)v = \sin(x).
Then 0etxcos(x)dx=[etxsin(x)]00tetxsin(x)dx=0+t0etxsin(x)dx\int_{0}^{\infty} e^{-tx} \cos(x) dx = [e^{-tx}\sin(x)]_{0}^{\infty} - \int_{0}^{\infty} -t e^{-tx} \sin(x) dx = 0 + t \int_{0}^{\infty} e^{-tx} \sin(x) dx.
Substituting this back into the first integration by parts:
0etxsin(x)dx=1t(t0etxsin(x)dx)=1t20etxsin(x)dx\int_{0}^{\infty} e^{-tx} \sin(x) dx = 1 - t(t \int_{0}^{\infty} e^{-tx} \sin(x) dx) = 1 - t^2 \int_{0}^{\infty} e^{-tx} \sin(x) dx.
So (1+t2)0etxsin(x)dx=1(1+t^2)\int_{0}^{\infty} e^{-tx} \sin(x) dx = 1, and 0etxsin(x)dx=11+t2\int_{0}^{\infty} e^{-tx} \sin(x) dx = \frac{1}{1+t^2}.
Then dIdt=11+t2\frac{dI}{dt} = - \frac{1}{1+t^2}.
Integrating with respect to tt, we have I(t)=arctan(t)+CI(t) = -\arctan(t) + C.
As tt \to \infty, I(t)0I(t) \to 0, so 0=arctan()+C=π2+C0 = -\arctan(\infty) + C = -\frac{\pi}{2} + C, which gives C=π2C = \frac{\pi}{2}.
Thus I(t)=arctan(t)+π2I(t) = -\arctan(t) + \frac{\pi}{2}.
We want I(0)=0sin(x)xdxI(0) = \int_{0}^{\infty} \frac{\sin(x)}{x} dx, so we evaluate I(0)=arctan(0)+π2=0+π2=π2I(0) = -\arctan(0) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}.

3. Final Answer

π2\frac{\pi}{2}

Related problems in "Analysis"

We need to evaluate the definite integral of $\frac{1}{1+x^{60}}$ from $0$ to $\infty$. That is, we ...

Definite IntegralIntegrationCalculusSpecial Functions
2025/4/16

We are asked to evaluate the limits: (1) $ \lim_{x \to 0} (\frac{1}{x} \cdot \sin x) $ (2) $ \lim_{x...

LimitsTrigonometryL'Hopital's RuleTaylor Series
2025/4/15

We are asked to evaluate the limit of the function $\frac{(x-1)^2}{1-x^2}$ as $x$ approaches 1.

LimitsAlgebraic ManipulationRational Functions
2025/4/15

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13