We need to evaluate the definite integral $I = \int_{0}^{\infty} \frac{\sin(x)}{x} dx$. This is a classic improper integral, often called the Dirichlet integral.

AnalysisDefinite IntegralsImproper IntegralsDirichlet IntegralIntegration by PartsParameterizationDifferentiation under the integral sign
2025/3/7

1. Problem Description

We need to evaluate the definite integral I=0sin(x)xdxI = \int_{0}^{\infty} \frac{\sin(x)}{x} dx. This is a classic improper integral, often called the Dirichlet integral.

2. Solution Steps

We introduce a parameter tt and consider the integral
I(t)=0etxsin(x)xdxI(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin(x)}{x} dx.
Note that I(0)=0sin(x)xdxI(0) = \int_{0}^{\infty} \frac{\sin(x)}{x} dx which is the integral we want to find, and I()=0I(\infty) = 0.
We differentiate I(t)I(t) with respect to tt:
dIdt=ddt0etxsin(x)xdx=0t(etxsin(x)x)dx=0etxsin(x)dx=0etxsin(x)dx\frac{dI}{dt} = \frac{d}{dt} \int_{0}^{\infty} e^{-tx} \frac{\sin(x)}{x} dx = \int_{0}^{\infty} \frac{\partial}{\partial t} (e^{-tx} \frac{\sin(x)}{x}) dx = \int_{0}^{\infty} -e^{-tx} \sin(x) dx = - \int_{0}^{\infty} e^{-tx} \sin(x) dx
We can evaluate this integral using integration by parts twice.
Let u=etxu = e^{-tx} and dv=sin(x)dxdv = \sin(x) dx, so du=tetxdxdu = -te^{-tx} dx and v=cos(x)v = -\cos(x).
Then 0etxsin(x)dx=[etxcos(x)]00tetxcos(x)dx=[0(1)]t0etxcos(x)dx=1t0etxcos(x)dx\int_{0}^{\infty} e^{-tx} \sin(x) dx = [-e^{-tx}\cos(x)]_{0}^{\infty} - \int_{0}^{\infty} t e^{-tx} \cos(x) dx = [0 - (-1)] - t\int_{0}^{\infty} e^{-tx} \cos(x) dx = 1 - t\int_{0}^{\infty} e^{-tx} \cos(x) dx.
Now, let u=etxu = e^{-tx} and dv=cos(x)dxdv = \cos(x) dx, so du=tetxdxdu = -te^{-tx} dx and v=sin(x)v = \sin(x).
Then 0etxcos(x)dx=[etxsin(x)]00tetxsin(x)dx=0+t0etxsin(x)dx\int_{0}^{\infty} e^{-tx} \cos(x) dx = [e^{-tx}\sin(x)]_{0}^{\infty} - \int_{0}^{\infty} -t e^{-tx} \sin(x) dx = 0 + t \int_{0}^{\infty} e^{-tx} \sin(x) dx.
Substituting this back into the first integration by parts:
0etxsin(x)dx=1t(t0etxsin(x)dx)=1t20etxsin(x)dx\int_{0}^{\infty} e^{-tx} \sin(x) dx = 1 - t(t \int_{0}^{\infty} e^{-tx} \sin(x) dx) = 1 - t^2 \int_{0}^{\infty} e^{-tx} \sin(x) dx.
So (1+t2)0etxsin(x)dx=1(1+t^2)\int_{0}^{\infty} e^{-tx} \sin(x) dx = 1, and 0etxsin(x)dx=11+t2\int_{0}^{\infty} e^{-tx} \sin(x) dx = \frac{1}{1+t^2}.
Then dIdt=11+t2\frac{dI}{dt} = - \frac{1}{1+t^2}.
Integrating with respect to tt, we have I(t)=arctan(t)+CI(t) = -\arctan(t) + C.
As tt \to \infty, I(t)0I(t) \to 0, so 0=arctan()+C=π2+C0 = -\arctan(\infty) + C = -\frac{\pi}{2} + C, which gives C=π2C = \frac{\pi}{2}.
Thus I(t)=arctan(t)+π2I(t) = -\arctan(t) + \frac{\pi}{2}.
We want I(0)=0sin(x)xdxI(0) = \int_{0}^{\infty} \frac{\sin(x)}{x} dx, so we evaluate I(0)=arctan(0)+π2=0+π2=π2I(0) = -\arctan(0) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}.

3. Final Answer

π2\frac{\pi}{2}

Related problems in "Analysis"

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2