与えられた式 $(x+3)(x^2 - 3x + 9)$ を展開し、簡略化する問題です。

代数学展開因数分解式の簡略化3乗の公式
2025/5/15

1. 問題の内容

与えられた式 (x+3)(x23x+9)(x+3)(x^2 - 3x + 9) を展開し、簡略化する問題です。

2. 解き方の手順

この式は、和の3乗の公式 a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2) を利用して解くことができます。
この場合、a=xa = xb=3b = 3 と考えると、与えられた式はまさにこの公式の右辺の形をしています。
したがって、公式を適用することで、x3+33x^3 + 3^3 となります。
333^32727 なので、x3+27x^3 + 27 が最終的な式になります。

3. 最終的な答え

x3+27x^3 + 27

「代数学」の関連問題

関数 $y = \frac{2x-3}{x+1}$ (ただし $0 \le x \le 4$) の逆関数を求めよ。

逆関数関数の定義域関数の値域
2025/5/15

$x+y=2$、 $xy=-1$のとき、以下の式の値を求めよ。 (1) $x^2+y^2$ (2) $x^3+y^3$ (3) $x^4+y^4$ (4) $x^5+y^5$

式の計算因数分解多項式
2025/5/15

(1) 全ての実数 $x$ に対して、$ax^2 + (a+1)x + a < 0$ が成り立つような定数 $a$ の値の範囲を求める。 (2) 2次不等式 $ax^2 + 8x + b > 0$ の...

二次不等式判別式二次関数のグラフ解の範囲
2025/5/15

問題は、式 $x^3 - 9x^2y + 27xy^2 - 27y^3$ を、次の2つの方法で因数分解することです。 (1) $x^3 - 9x^2y + 27xy^2 - 27y^3 = (x^3 ...

因数分解多項式公式展開
2025/5/15

与えられた多項式 $x^6 + 9x^3 + 8$ を因数分解します。

因数分解多項式三次式二次式
2025/5/15

与えられた式 $2c(a - 3b) + (3b - a)d$ を展開し、整理する問題です。

式の展開因数分解分配法則文字式
2025/5/15

次の式を因数分解する問題です。 (1) $x^6 - 64$

因数分解多項式式の展開
2025/5/15

与えられた式 $x^6 - 64$ を因数分解する問題です。

因数分解多項式
2025/5/15

与えられた式 $a(x-y) - 2(y-x)$ を簡単にせよ。

式の展開因数分解文字式
2025/5/15

与えられた式 $x(x+1) + (x+1)$ を展開し、整理して簡単にします。

式の展開因数分解多項式
2025/5/15