$x+y=2$、 $xy=-1$のとき、以下の式の値を求めよ。 (1) $x^2+y^2$ (2) $x^3+y^3$ (3) $x^4+y^4$ (4) $x^5+y^5$代数学式の計算因数分解多項式2025/5/151. 問題の内容x+y=2x+y=2x+y=2、 xy=−1xy=-1xy=−1のとき、以下の式の値を求めよ。(1) x2+y2x^2+y^2x2+y2(2) x3+y3x^3+y^3x3+y3(3) x4+y4x^4+y^4x4+y4(4) x5+y5x^5+y^5x5+y52. 解き方の手順(1) x2+y2x^2+y^2x2+y2(x+y)2=x2+2xy+y2(x+y)^2 = x^2 + 2xy + y^2(x+y)2=x2+2xy+y2 より、x2+y2=(x+y)2−2xyx^2+y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyx+y=2x+y=2x+y=2、 xy=−1xy=-1xy=−1を代入して、x2+y2=(2)2−2(−1)=4+2=6x^2+y^2 = (2)^2 - 2(-1) = 4+2=6x2+y2=(2)2−2(−1)=4+2=6(2) x3+y3x^3+y^3x3+y3x3+y3=(x+y)(x2−xy+y2)x^3+y^3 = (x+y)(x^2-xy+y^2)x3+y3=(x+y)(x2−xy+y2)x+y=2x+y=2x+y=2、xy=−1xy=-1xy=−1、x2+y2=6x^2+y^2 = 6x2+y2=6を代入して、x3+y3=(2)(6−(−1))=2(7)=14x^3+y^3 = (2)(6-(-1)) = 2(7)=14x3+y3=(2)(6−(−1))=2(7)=14(3) x4+y4x^4+y^4x4+y4(x2+y2)2=x4+2x2y2+y4(x^2+y^2)^2 = x^4+2x^2y^2+y^4(x2+y2)2=x4+2x2y2+y4より、x4+y4=(x2+y2)2−2(xy)2x^4+y^4 = (x^2+y^2)^2 - 2(xy)^2x4+y4=(x2+y2)2−2(xy)2x2+y2=6x^2+y^2 = 6x2+y2=6、xy=−1xy=-1xy=−1を代入して、x4+y4=(6)2−2(−1)2=36−2=34x^4+y^4 = (6)^2 - 2(-1)^2 = 36 - 2 = 34x4+y4=(6)2−2(−1)2=36−2=34(4) x5+y5x^5+y^5x5+y5x5+y5=(x2+y2)(x3+y3)−x2y3−x3y2=(x2+y2)(x3+y3)−(xy)2(x+y)x^5+y^5 = (x^2+y^2)(x^3+y^3) - x^2y^3 - x^3y^2 = (x^2+y^2)(x^3+y^3) - (xy)^2(x+y)x5+y5=(x2+y2)(x3+y3)−x2y3−x3y2=(x2+y2)(x3+y3)−(xy)2(x+y)x2+y2=6x^2+y^2=6x2+y2=6、x3+y3=14x^3+y^3=14x3+y3=14、xy=−1xy=-1xy=−1、x+y=2x+y=2x+y=2を代入して、x5+y5=(6)(14)−(−1)2(2)=84−2=82x^5+y^5 = (6)(14) - (-1)^2(2) = 84-2=82x5+y5=(6)(14)−(−1)2(2)=84−2=823. 最終的な答え(1) x2+y2=6x^2+y^2 = 6x2+y2=6(2) x3+y3=14x^3+y^3 = 14x3+y3=14(3) x4+y4=34x^4+y^4 = 34x4+y4=34(4) x5+y5=82x^5+y^5 = 82x5+y5=82