与えられた角度(300°, 420°, 1040°, -60°, -300°, -780°)の中で、60°の角度と動径が同じ位置にある角度を求める。動径が同じ位置にあるとは、360°の整数倍の差があることを意味する。

幾何学角度動径三角比周期性
2025/5/16

1. 問題の内容

与えられた角度(300°, 420°, 1040°, -60°, -300°, -780°)の中で、60°の角度と動径が同じ位置にある角度を求める。動径が同じ位置にあるとは、360°の整数倍の差があることを意味する。

2. 解き方の手順

与えられた角度から60°を引いた値が、360°の整数倍になっているかどうかを確認する。
* 300°の場合:300°60°=240°300° - 60° = 240°。これは360°の整数倍ではない。
* 420°の場合:420°60°=360°420° - 60° = 360°。これは360°の1倍である。
* 1040°の場合:1040°60°=980°1040° - 60° = 980°980°=360°×2+260°980° = 360° \times 2 + 260°なので、360°の整数倍ではない。
* -60°の場合:60°60°=120°-60° - 60° = -120°。これは360°の整数倍ではない。
* -300°の場合:300°60°=360°-300° - 60° = -360°。これは360°の-1倍である。
* -780°の場合:780°60°=840°-780° - 60° = -840°840/360=2.333... -840/360 = -2.333...これは360°の整数倍ではない。

3. 最終的な答え

420°と-300°

「幾何学」の関連問題

問題は、(1)から(3)までの角度を度数法から弧度法に変換し、(4)と(5)の角度を弧度法から度数法に変換する問題です。

角度弧度法度数法三角比
2025/5/16

与えられた図のベクトル $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ を成分表示し、それぞれのベクトルの大きさを求める。

ベクトルベクトルの成分ベクトルの大きさ図形
2025/5/16

与えられた図のベクトル $\vec{a}$, $\vec{b}$, $\vec{c}$, $\vec{d}$ を成分表示し、それぞれのベクトルの大きさを求める問題です。

ベクトル成分表示ベクトルの大きさ座標
2025/5/16

AB = 2 を直径とする半円周上に点Pがある。角PAB = $\theta$(ただし、$0 < \theta < \frac{\pi}{2}$)とする。点Pから直径ABに下ろした垂線の足をHとする。...

三角比最大値半円角度三角関数
2025/5/16

直角三角形ABCにおいて、角Aは25度、斜辺ABの長さは10です。このとき、底辺ACの長さ(①)と高さBCの長さ(②)を求め、それぞれ小数第1位まで四捨五入しなさい。

三角比直角三角形三角関数辺の長さ角度
2025/5/16

直角三角形ABCにおいて、$∠A = 61°$, $AC = 2$である。辺BCの長さ(①)と辺ABの長さ(②)を、三角比の表を用いて、小数第1位まで求める。

三角比直角三角形三角関数辺の長さ計算
2025/5/16

$\theta$は鋭角であるとき、$\sin{\theta} = \frac{2}{3}$ のとき、$\sin(90^\circ - \theta)$の値を求める問題です。

三角関数三角比相互関係
2025/5/16

$\theta$は鋭角である。$\sin \theta = \frac{2}{3}$ のとき、$\cos \theta$ の値を求め、$\cos \theta = \frac{\sqrt{①}}{②}...

三角比三角関数sincos鋭角
2025/5/16

$\theta$は鋭角とする。$\cos \theta = \frac{2}{3}$のとき、$\sin \theta$と$\tan \theta$の値を求めなさい。

三角比三角関数鋭角sincostan
2025/5/16

$\theta$ は鋭角であるとき、$\cos \theta = \frac{5}{13}$ のとき、$\sin \theta$ と $\tan \theta$ の値を求めます。

三角比三角関数sincostan鋭角
2025/5/16