First, we need to find the points of intersection of the two parabolas by setting the equations equal to each other:
2x2+1=x2−2x+4 2x2−x2+2x+1−4=0 x2+2x−3=0 (x+3)(x−1)=0 x=−3 or x=1. So, the intersection points are x=−3 and x=1. Now we need to find the area between the curves. The area is given by the integral of the absolute difference between the two functions over the interval [−3,1]. S=∫−31∣(2x2+1)−(x2−2x+4)∣dx S=∫−31∣2x2+1−x2+2x−4∣dx S=∫−31∣x2+2x−3∣dx Since x2+2x−3=(x+3)(x−1), the expression is negative between −3 and 1. So, we change the sign inside the integral. S=∫−31−(x2+2x−3)dx S=∫−31(−x2−2x+3)dx S=[−31x3−x2+3x]−31 S=(−31(1)3−(1)2+3(1))−(−31(−3)3−(−3)2+3(−3)) S=(−31−1+3)−(−31(−27)−9−9) S=(−31+2)−(9−9−9) S=3−1+6−(−9) S=35+9 S=35+327 S=332