(1) The x-intercepts of y = − x 2 − 4 x y = -x^2 - 4x y = − x 2 − 4 x are found by setting y = 0 y=0 y = 0 : − x 2 − 4 x = 0 -x^2 - 4x = 0 − x 2 − 4 x = 0 − x ( x + 4 ) = 0 -x(x+4) = 0 − x ( x + 4 ) = 0
The area S is given by the integral:
S = ∫ − 4 0 ( − x 2 − 4 x ) d x S = \int_{-4}^{0} (-x^2 - 4x) dx S = ∫ − 4 0 ( − x 2 − 4 x ) d x S = [ − 1 3 x 3 − 2 x 2 ] − 4 0 S = [-\frac{1}{3}x^3 - 2x^2]_{-4}^{0} S = [ − 3 1 x 3 − 2 x 2 ] − 4 0 S = ( 0 ) − ( − 1 3 ( − 4 ) 3 − 2 ( − 4 ) 2 ) S = (0) - (-\frac{1}{3}(-4)^3 - 2(-4)^2) S = ( 0 ) − ( − 3 1 ( − 4 ) 3 − 2 ( − 4 ) 2 ) S = − ( − 1 3 ( − 64 ) − 2 ( 16 ) ) S = -(-\frac{1}{3}(-64) - 2(16)) S = − ( − 3 1 ( − 64 ) − 2 ( 16 )) S = − ( 64 3 − 32 ) S = -(\frac{64}{3} - 32) S = − ( 3 64 − 32 ) S = − ( 64 3 − 96 3 ) S = -(\frac{64}{3} - \frac{96}{3}) S = − ( 3 64 − 3 96 ) S = − ( − 32 3 ) S = -(\frac{-32}{3}) S = − ( 3 − 32 ) S = 32 3 S = \frac{32}{3} S = 3 32
(2) The x-intercepts of y = x 2 + 4 x + 3 y = x^2 + 4x + 3 y = x 2 + 4 x + 3 are found by setting y = 0 y=0 y = 0 : x 2 + 4 x + 3 = 0 x^2 + 4x + 3 = 0 x 2 + 4 x + 3 = 0 ( x + 1 ) ( x + 3 ) = 0 (x+1)(x+3) = 0 ( x + 1 ) ( x + 3 ) = 0 The area S is given by the integral:
S = ∣ ∫ − 3 − 1 ( x 2 + 4 x + 3 ) d x ∣ S = \left| \int_{-3}^{-1} (x^2 + 4x + 3) dx \right| S = ∫ − 3 − 1 ( x 2 + 4 x + 3 ) d x S = ∣ [ 1 3 x 3 + 2 x 2 + 3 x ] − 3 − 1 ∣ S = \left| [\frac{1}{3}x^3 + 2x^2 + 3x]_{-3}^{-1} \right| S = [ 3 1 x 3 + 2 x 2 + 3 x ] − 3 − 1 S = ∣ ( 1 3 ( − 1 ) 3 + 2 ( − 1 ) 2 + 3 ( − 1 ) ) − ( 1 3 ( − 3 ) 3 + 2 ( − 3 ) 2 + 3 ( − 3 ) ) ∣ S = \left| (\frac{1}{3}(-1)^3 + 2(-1)^2 + 3(-1)) - (\frac{1}{3}(-3)^3 + 2(-3)^2 + 3(-3)) \right| S = ( 3 1 ( − 1 ) 3 + 2 ( − 1 ) 2 + 3 ( − 1 )) − ( 3 1 ( − 3 ) 3 + 2 ( − 3 ) 2 + 3 ( − 3 )) S = ∣ ( − 1 3 + 2 − 3 ) − ( 1 3 ( − 27 ) + 2 ( 9 ) − 9 ) ∣ S = \left| (-\frac{1}{3} + 2 - 3) - (\frac{1}{3}(-27) + 2(9) - 9) \right| S = ( − 3 1 + 2 − 3 ) − ( 3 1 ( − 27 ) + 2 ( 9 ) − 9 ) S = ∣ ( − 1 3 − 1 ) − ( − 9 + 18 − 9 ) ∣ S = \left| (-\frac{1}{3} - 1) - (-9 + 18 - 9) \right| S = ( − 3 1 − 1 ) − ( − 9 + 18 − 9 ) S = ∣ − 4 3 − 0 ∣ S = \left| -\frac{4}{3} - 0 \right| S = − 3 4 − 0 S = ∣ − 4 3 ∣ S = \left| -\frac{4}{3} \right| S = − 3 4