(1) Find the intersection points of y=−x2−4x and the x-axis (y=0). −x2−4x=0 −x(x+4)=0 x=0 or x=−4 The area is given by the definite integral:
S=∫−40(−x2−4x)dx S=[−3x3−2x2]−40 S=(0)−(−3(−4)3−2(−4)2) S=−(364−32)=32−364=396−64=332 (4) Find the intersection points of y=5x−x2 and y=x2−x+4. 5x−x2=x2−x+4 0=2x2−6x+4 0=x2−3x+2 0=(x−1)(x−2) The area is given by the definite integral:
S=∫12(5x−x2−(x2−x+4))dx S=∫12(5x−x2−x2+x−4)dx S=∫12(−2x2+6x−4)dx S=[−32x3+3x2−4x]12 S=(−32(2)3+3(2)2−4(2))−(−32(1)3+3(1)2−4(1)) S=(−316+12−8)−(−32+3−4) S=(−316+4)−(−32−1) S=−316+4+32+1 S=−314+5=3−14+15=31