次の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n - 1) \cdot 2^{n-1}$解析学級数等比数列数列の和2025/5/181. 問題の内容次の和 SSS を求めます。S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n - 1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−12. 解き方の手順まず、2S2S2S を計算します。2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n2S = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n - 3) \cdot 2^{n-1} + (2n - 1) \cdot 2^n2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n次に、S−2SS - 2SS−2S を計算します。S−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2nS - 2S = 1 \cdot 1 + (3 - 1) \cdot 2 + (5 - 3) \cdot 2^2 + \dots + (2n - 1 - (2n - 3)) \cdot 2^{n-1} - (2n - 1) \cdot 2^nS−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n-S = 1 + 2 \cdot 2 + 2 \cdot 2^2 + \dots + 2 \cdot 2^{n-1} - (2n - 1) \cdot 2^n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n-S = 1 + 2(2 + 2^2 + \dots + 2^{n-1}) - (2n - 1) \cdot 2^n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2nここで、2+22+⋯+2n−12 + 2^2 + \dots + 2^{n-1}2+22+⋯+2n−1 は初項 222、公比 222、項数 n−1n-1n−1 の等比数列の和なので、2+22+⋯+2n−1=2(2n−1−1)2−1=2(2n−1−1)=2n−22 + 2^2 + \dots + 2^{n-1} = \frac{2(2^{n-1} - 1)}{2 - 1} = 2(2^{n-1} - 1) = 2^n - 22+22+⋯+2n−1=2−12(2n−1−1)=2(2n−1−1)=2n−2したがって、−S=1+2(2n−2)−(2n−1)⋅2n-S = 1 + 2(2^n - 2) - (2n - 1) \cdot 2^n−S=1+2(2n−2)−(2n−1)⋅2n−S=1+2n+1−4−(2n−1)⋅2n-S = 1 + 2^{n+1} - 4 - (2n - 1) \cdot 2^n−S=1+2n+1−4−(2n−1)⋅2n−S=2n+1−3−2n⋅2n+2n-S = 2^{n+1} - 3 - 2n \cdot 2^n + 2^n−S=2n+1−3−2n⋅2n+2n−S=2n(2−2n+1)−3-S = 2^n(2 - 2n + 1) - 3−S=2n(2−2n+1)−3−S=2n(3−2n)−3-S = 2^n(3 - 2n) - 3−S=2n(3−2n)−3S=3−(3−2n)⋅2nS = 3 - (3 - 2n) \cdot 2^nS=3−(3−2n)⋅2nS=3+(2n−3)⋅2nS = 3 + (2n - 3) \cdot 2^nS=3+(2n−3)⋅2n3. 最終的な答えS=(2n−3)⋅2n+3S = (2n - 3) \cdot 2^n + 3S=(2n−3)⋅2n+3