問題は、$\lim_{x \to 0} \frac{\tan x}{x}$ の値を求めることです。

解析学極限三角関数ロピタルの定理
2025/5/20

1. 問題の内容

問題は、limx0tanxx\lim_{x \to 0} \frac{\tan x}{x} の値を求めることです。

2. 解き方の手順

tanx\tan xsinxcosx\frac{\sin x}{\cos x} で置き換えます。
limx0tanxx=limx0sinxcosxx=limx0sinxxcosx\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x}
ここで、limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1limx0cosx=1\lim_{x \to 0} \cos x = 1 を利用します。
limx0sinxxcosx=limx0sinxxlimx01cosx\lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x}
それぞれの極限を計算します。
limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1
limx01cosx=11=1\lim_{x \to 0} \frac{1}{\cos x} = \frac{1}{1} = 1
よって、
limx0tanxx=11=1\lim_{x \to 0} \frac{\tan x}{x} = 1 \cdot 1 = 1

3. 最終的な答え

1

「解析学」の関連問題

与えられた6つの極限について、収束するか発散するかを調べ、収束する場合はその極限値を求めます。

極限関数の極限無限大ロピタルの定理
2025/5/20

次の極限値を求めます。 (1) $\lim_{h \to 0} \frac{1}{h} (\frac{1}{4+h} - \frac{1}{4})$ (2) $\lim_{x \to \infty} ...

極限微分有理化
2025/5/20

(1) 関数 $y = \log_2(-x^2 + 3x - 2)$ の最大値と、そのときの $x$ の値を求める。 (2) 関数 $y = \log_{\frac{1}{2}}(4x - x^2)$...

対数関数最大値最小値真数条件平方完成
2025/5/20

$\log(\arcsin(1))$ を計算せよ。

対数逆三角関数計算近似
2025/5/20

$\log(\arcsin x)$ を微分せよ。

微分合成関数対数関数逆三角関数
2025/5/20

与えられた式 $log_4(sin x + 1)$ の微分を求める問題です。

微分対数関数合成関数三角関数
2025/5/20

与えられた極限を計算します。具体的には、 $\lim_{x\to\infty} \frac{\log(\arcsin(\frac{1}{x}))}{\log x}$ を求めます。

極限L'Hopitalの定理微分arcsin対数関数
2025/5/20

次の極限を求め、収束・発散を調べます。 (1) $\lim_{x \to 1+0} \frac{|x-1|}{x-1}$ (2) $\lim_{x \to 2-0} \frac{1}{x-2}$ (3...

極限関数の極限片側極限収束発散
2025/5/20

次の4つの極限について、収束するか発散するかを調べ、収束する場合はその極限値を求めます。 (1) $\lim_{x \to 1+0} \frac{|x-1|}{x-1}$ (2) $\lim_{x \...

極限関数の極限片側極限絶対値
2025/5/20

$a$ は1以上の定数である。点 $P(x, y)$ は曲線 $y = |x^2 - 5x + 4|$ 上を動く点で、その $x$ 座標は $1 \le x \le a$ を満たす。このとき、$\fr...

関数の最大値絶対値グラフ微分
2025/5/20