次の3つの和を求めます。 (1) $\sum_{k=1}^{n} k(k-1)$ (2) $1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \dots + n(2n+1)$ (3) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$代数学数列シグマ級数公式2025/5/181. 問題の内容次の3つの和を求めます。(1) ∑k=1nk(k−1)\sum_{k=1}^{n} k(k-1)∑k=1nk(k−1)(2) 1⋅3+2⋅5+3⋅7+⋯+n(2n+1)1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \dots + n(2n+1)1⋅3+2⋅5+3⋅7+⋯+n(2n+1)(3) 12+32+52+⋯+(2n−1)21^2 + 3^2 + 5^2 + \dots + (2n-1)^212+32+52+⋯+(2n−1)22. 解き方の手順(1) ∑k=1nk(k−1)=∑k=1n(k2−k)=∑k=1nk2−∑k=1nk\sum_{k=1}^{n} k(k-1) = \sum_{k=1}^{n} (k^2 - k) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k∑k=1nk(k−1)=∑k=1n(k2−k)=∑k=1nk2−∑k=1nk∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)したがって、∑k=1nk(k−1)=n(n+1)(2n+1)6−n(n+1)2=n(n+1)(2n+1)−3n(n+1)6=n(n+1)(2n+1−3)6=n(n+1)(2n−2)6=2n(n+1)(n−1)6=n(n+1)(n−1)3=n(n2−1)3=n3−n3\sum_{k=1}^{n} k(k-1) = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1) - 3n(n+1)}{6} = \frac{n(n+1)(2n+1-3)}{6} = \frac{n(n+1)(2n-2)}{6} = \frac{2n(n+1)(n-1)}{6} = \frac{n(n+1)(n-1)}{3} = \frac{n(n^2-1)}{3} = \frac{n^3-n}{3}∑k=1nk(k−1)=6n(n+1)(2n+1)−2n(n+1)=6n(n+1)(2n+1)−3n(n+1)=6n(n+1)(2n+1−3)=6n(n+1)(2n−2)=62n(n+1)(n−1)=3n(n+1)(n−1)=3n(n2−1)=3n3−n(2) 1⋅3+2⋅5+3⋅7+⋯+n(2n+1)=∑k=1nk(2k+1)=∑k=1n(2k2+k)=2∑k=1nk2+∑k=1nk1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \dots + n(2n+1) = \sum_{k=1}^{n} k(2k+1) = \sum_{k=1}^{n} (2k^2 + k) = 2\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k1⋅3+2⋅5+3⋅7+⋯+n(2n+1)=∑k=1nk(2k+1)=∑k=1n(2k2+k)=2∑k=1nk2+∑k=1nk=2n(n+1)(2n+1)6+n(n+1)2=n(n+1)(2n+1)3+n(n+1)2=2n(n+1)(2n+1)+3n(n+1)6=n(n+1)(2(2n+1)+3)6=n(n+1)(4n+2+3)6=n(n+1)(4n+5)6= 2\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{3} + \frac{n(n+1)}{2} = \frac{2n(n+1)(2n+1) + 3n(n+1)}{6} = \frac{n(n+1)(2(2n+1)+3)}{6} = \frac{n(n+1)(4n+2+3)}{6} = \frac{n(n+1)(4n+5)}{6}=26n(n+1)(2n+1)+2n(n+1)=3n(n+1)(2n+1)+2n(n+1)=62n(n+1)(2n+1)+3n(n+1)=6n(n+1)(2(2n+1)+3)=6n(n+1)(4n+2+3)=6n(n+1)(4n+5)(3) 12+32+52+⋯+(2n−1)2=∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n11^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \sum_{k=1}^{n} (2k-1)^2 = \sum_{k=1}^{n} (4k^2 - 4k + 1) = 4\sum_{k=1}^{n} k^2 - 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 112+32+52+⋯+(2n−1)2=∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n1=4n(n+1)(2n+1)6−4n(n+1)2+n=2n(n+1)(2n+1)3−2n(n+1)+n=2n(n+1)(2n+1)−6n(n+1)+3n3=n(2(n+1)(2n+1)−6(n+1)+3)3=n(2(2n2+3n+1)−6n−6+3)3=n(4n2+6n+2−6n−3)3=n(4n2−1)3=n(2n−1)(2n+1)3= 4\frac{n(n+1)(2n+1)}{6} - 4\frac{n(n+1)}{2} + n = \frac{2n(n+1)(2n+1)}{3} - 2n(n+1) + n = \frac{2n(n+1)(2n+1) - 6n(n+1) + 3n}{3} = \frac{n(2(n+1)(2n+1) - 6(n+1) + 3)}{3} = \frac{n(2(2n^2+3n+1) - 6n - 6 + 3)}{3} = \frac{n(4n^2+6n+2-6n-3)}{3} = \frac{n(4n^2-1)}{3} = \frac{n(2n-1)(2n+1)}{3}=46n(n+1)(2n+1)−42n(n+1)+n=32n(n+1)(2n+1)−2n(n+1)+n=32n(n+1)(2n+1)−6n(n+1)+3n=3n(2(n+1)(2n+1)−6(n+1)+3)=3n(2(2n2+3n+1)−6n−6+3)=3n(4n2+6n+2−6n−3)=3n(4n2−1)=3n(2n−1)(2n+1)3. 最終的な答え(1) n3−n3\frac{n^3 - n}{3}3n3−n(2) n(n+1)(4n+5)6\frac{n(n+1)(4n+5)}{6}6n(n+1)(4n+5)(3) n(4n2−1)3\frac{n(4n^2-1)}{3}3n(4n2−1)