与えられた2次方程式 $4x^2 - x + 6 = 0$ の2つの解の和を求めます。

代数学二次方程式解の和根と係数の関係
2025/5/18

1. 問題の内容

与えられた2次方程式 4x2x+6=04x^2 - x + 6 = 0 の2つの解の和を求めます。

2. 解き方の手順

2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
解を α\alphaβ\beta とすると、
α=b+b24ac2a\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
β=bb24ac2a\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
解の和は、
α+β=b+b24ac2a+bb24ac2a=2b2a=ba\alpha + \beta = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}
2次方程式 4x2x+6=04x^2 - x + 6 = 0 において、a=4a = 4, b=1b = -1, c=6c = 6 なので、解の和は
ba=14=14-\frac{b}{a} = -\frac{-1}{4} = \frac{1}{4}

3. 最終的な答え

14\frac{1}{4}

「代数学」の関連問題

与えられた4つの式をそれぞれ簡単にせよ。 (1) $(\sqrt{3} - \sqrt{2} + 1)^3 (\sqrt{3} + \sqrt{2} - 1)^3$ (2) $\frac{1}{1 +...

式の計算平方根有理化絶対値
2025/5/18

与えられた式を計算し、簡略化します。問題の式は次の通りです。 $\frac{1}{1 + \frac{4x^2}{(1-x^2)^2}} \times \frac{1+x^2}{(1-x^2)^2}$

式の計算分数式因数分解約分式変形
2025/5/18

以下の4つの式を因数分解してください。 (1) $x^2 z - 2xyz - 3y^2 z - 2x^2 + 4xy + 6y^2$ (2) $2x^2 + 3xy + y^2 + 3x + y -...

因数分解多項式
2025/5/18

$\frac{2}{3} < x < \frac{3}{4}$ のとき、$\sqrt{9x^2 - 12x + 4} + \sqrt{x^2 + 4x + 4} - \sqrt{16x^2 - 24x...

絶対値因数分解不等式式の計算
2025/5/18

画像に写っている3つの数式をそれぞれ展開・計算して簡単にしてください。 (1) $(x^2+x+2)(x^2-x+2)$ (2) $(x^2+xy+y^2)(x^2+y^2)(x-y)^2(x+y)$...

展開多項式式変形
2025/5/18

与えられた3つの式を展開する問題です。 (1) $(x^2 + x + 2)(x^2 - x + 2)$ (2) $(x^2 + xy + y^2)(x^2 + y^2)(x - y)^2(x + y...

多項式の展開因数分解展開公式
2025/5/18

$\frac{\pi}{2} < \alpha < \pi$ で $\sin \alpha = \frac{3}{5}$ のとき、以下の値を求めよ。 (1) $\cos 2\alpha$ (2) $\...

三角関数加法定理倍角の公式半角の公式三角比
2025/5/18

数列の和 $S_n$ を求める問題です。$S_n$は、$\frac{10}{9}(10^n - 1)$ から $n$ を引き、さらに 9 で割ったものとして定義されます。つまり、$S_n$を数式で表す...

数列等比数列式変形
2025/5/18

(1) ベクトル $\vec{a}=(1, 2)$ と $\vec{b}=(k, 4)$ が与えられている。 - $\vec{a} - \vec{b}$ と $2\vec{b} - \vec{...

ベクトル内積空間ベクトル
2025/5/18

## 問題46の解答

ベクトル内分一次結合空間ベクトルベクトルの大きさ平方完成
2025/5/18